Featured Research

from universities, journals, and other organizations

Predictive fitness model for influenza: Physics, computer science help find clues on flu evolution

Date:
February 26, 2014
Source:
Columbia University
Summary:
A new model to successfully predict the evolution of the influenza virus from one year to the next has been created by researchers. This advance in our understanding of influenza suggests a new, systematic way to select influenza vaccine strains. The flu is one of the major infectious diseases in humans. Seasonal strains of the influenza A virus account for about half a million deaths per year. Because influenza is a fast-evolving pathogen, the selection of optimal vaccines is a challenging global health issue. The scientists used ideas from physics and computer science in their approach to finding clues about the predictable versus random part of the flu evolution.

Researchers at Columbia University and the University of Cologne have created a new model to successfully predict the evolution of the influenza virus from one year to the next. This advance in our understanding of influenza suggests a new, systematic way to select influenza vaccine strains. The findings appear in Nature on Feb. 26.

Related Articles


The flu is one of the major infectious diseases in humans. Seasonal strains of the influenza A virus account for about half a million deaths per year. In a concerted effort, WHO and its Collaborating Centers have closely monitored the evolution of the seasonal H3N2 influenza strains for over 60 years. Based on these data, influenza strains are selected for vaccine production twice per year. Because influenza is a fast-evolving pathogen, the selection of optimal vaccines is a challenging global health issue.

In recent years, it became clear that the evolution of the flu is a complex process. Different influenza strains compete with each other; the race is about how to successfully infect humans. This prompted Marta Łuksza, of Columbia's Biological Sciences department and Michael Lässig of the Institute for Theoretical Physics at the University of Cologne, to ask the question: Can we predict which of these competitors will win the race?

"This was a challenge for an evolutionary biologist because there are very few systems in the wild for which quantitative predictions of their evolution are at all feasible," says Łuksza. "It was also a computational and theoretical challenge. While traditional evolutionary thinking is about reconstruction of the past, we had to develop ideas on how to reach into the future." Most importantly, the scientists had to find out which part of the system can be actually predicted and which are random. In their approach they used ideas from physics and computer science.

Łuksza and Lässig used Darwin's principle: survival of the fittest. But what determines how fit an influenza virus is? First, they considered innovation: the virus had to keep a high rate of mutations in order to escape from human immune response. But they also included conservation: these mutations must not compromise the essential functions of a virus, such as the correct folding of its proteins. Through studying the genomes of the virus, they devised a way to predict which viral strains have the optimal combination of innovation and conservation.

While Łuksza and Lässig focused on influenza, their approach highlights a general link between evolution and its consequences for epidemiology that is relevant for many fast-evolving pathogens. In a broader context, it touches upon the fundamental question of how predictable biological evolution is. "There is clearly no general answer to this question," says Łuksza. "But our analysis shows under what auspices limited predictions may be successful." Further extensive tests with global influenza data would help determine whether their method would lead to improved vaccines.


Story Source:

The above story is based on materials provided by Columbia University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marta Łuksza, Michael Lässig. A predictive fitness model for influenza. Nature, 2014; DOI: 10.1038/nature13087

Cite This Page:

Columbia University. "Predictive fitness model for influenza: Physics, computer science help find clues on flu evolution." ScienceDaily. ScienceDaily, 26 February 2014. <www.sciencedaily.com/releases/2014/02/140226132956.htm>.
Columbia University. (2014, February 26). Predictive fitness model for influenza: Physics, computer science help find clues on flu evolution. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2014/02/140226132956.htm
Columbia University. "Predictive fitness model for influenza: Physics, computer science help find clues on flu evolution." ScienceDaily. www.sciencedaily.com/releases/2014/02/140226132956.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) — A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) — An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) — A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) — If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins