Featured Research

from universities, journals, and other organizations

Ancient 'great leap forward' for life in the open ocean: Cyanobacteria sheds light on how complex life evolved on earth

Date:
February 27, 2014
Source:
University of Bristol
Summary:
Plankton in the Earth's oceans received a huge boost when microorganisms capable of creating soluble nitrogen 'fertilizer' directly from the atmosphere diversified and spread throughout the open ocean. This event occurred at around 800 million years ago and it changed forever how carbon was cycled in the ocean.

A plankton bloom in the Capricorn Channel off the Queensland coast of Australia - Trichodesmium — a photosynthetic cyanobacteria and nitrogen fixer.
Credit: Astronaut photograph ISS005-E-21572 taken December 3, 2002, provided by NASA's Earth Sciences and Image Analysis

Plankton in Earth's oceans received a huge boost when microorganisms capable of creating soluble nitrogen 'fertilizer' directly from the atmosphere diversified and spread throughout the open ocean. This event occurred at around 800 million years ago and it changed forever how carbon was cycled in the ocean.

It has long been believed that the appearance of complex multicellular life towards the end of the Precambrian (the geologic interval lasting up until 541 million years ago) was facilitated by an increase in oxygen, as revealed in the geological record. However, it has remained a mystery as to why oxygen increased at this particular time and what its relationship was to 'Snowball Earth' -- the most extreme climatic changes Earth has ever experienced -- which were also taking place around then.

This new study shows that it could in fact be what was happening to nitrogen at this time that helps solve the mystery.

The researchers, led by Dr Patricia Sanchez-Baracaldo of the University of Bristol, used genomic data to reconstruct the relationships between those cyanobacteria whose photosynthesis in the open ocean provided oxygen in quantities sufficient to be fundamental in the development of complex life on Earth.

Some of these cyanobacteria were also able to transform atmospheric nitrogen into bioavailable nitrogen in sufficient quantities to contribute to the marine nitrogen cycle, delivering 'nitrogen fertiliser' to the ecosystem. Using molecular techniques, the team were able to date when these species first appeared in the geological record to around 800 million years ago.

Dr Sanchez-Baracaldo, a Royal Society Dorothy Hodgkin Research Fellow in Bristol's Schools of Biological and Geographical Sciences said: "We have known that oxygenic photosynthesis -- the process by which microbes fix carbon dioxide into carbohydrates, splitting water and releasing oxygen as a by-product -- first evolved in freshwater habitats more than 2.3 billion years ago. But it wasn't until around 800 million years ago that these oxygenating cyanobacteria were able to colonise the vast oceans (two thirds of our planet) and be fertilised by enough bioavailable nitrogen to then produce oxygen -- and carbohydrate food -- at levels high enough to facilitate the next 'great leap forward' towards complex life.

"Our study suggests that it may have been the fixing of this nitrogen 'fertiliser' in the oceans at this time that played a pivotal role in this key moment in the evolution of life on Earth."

Co-author, Professor Andy Ridgwell said: "The timing of the spread in nitrogen fixers in the open ocean occurs just prior to global glaciations and the appearance of animals. Although further work is required, these evolutionary changes may well have been related to, and perhaps provided a trigger for, the occurrence of extreme glaciation around this time as carbon was now being buried in the sediments on a much larger scale."

Dr Sanchez-Baracaldo added: "It's very exciting to have been able to use state of the art genetic techniques to help solve an age-old mystery concerning one of the most important and pivotal moments in the evolution of life on Earth. In recent years, genomic data has been helping re-tell the story of the origins of life with increasing clarity and accuracy. It is a privilege to be contributing to our understanding of how microorganisms have contributed to make our planet habitable."


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Patricia Sαnchez-Baracaldo, Andy Ridgwell, John A. Raven. A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology, 2014; DOI: 10.1016/j.cub.2014.01.041

Cite This Page:

University of Bristol. "Ancient 'great leap forward' for life in the open ocean: Cyanobacteria sheds light on how complex life evolved on earth." ScienceDaily. ScienceDaily, 27 February 2014. <www.sciencedaily.com/releases/2014/02/140227125508.htm>.
University of Bristol. (2014, February 27). Ancient 'great leap forward' for life in the open ocean: Cyanobacteria sheds light on how complex life evolved on earth. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2014/02/140227125508.htm
University of Bristol. "Ancient 'great leap forward' for life in the open ocean: Cyanobacteria sheds light on how complex life evolved on earth." ScienceDaily. www.sciencedaily.com/releases/2014/02/140227125508.htm (accessed October 2, 2014).

Share This



More Fossils & Ruins News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German World War II Bomber Found in Croatia's Adriatic

German World War II Bomber Found in Croatia's Adriatic

AFP (Oct. 2, 2014) — A rare, well-preserved German World War II bomber has been found in Croatia's central Adriatic more than seven decades after it was shot down, the national conservation institute said on Wednesday. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Battle of New Orleans Cannon Gets New Carriage

Battle of New Orleans Cannon Gets New Carriage

AP (Sep. 30, 2014) — A Spanish cannon used in the Battle of New Orleans and weighing nearly 3 tons was lowered Tuesday by pulleys, chains and muscle onto a new gun carriage like one that might have held it once aboard a navy ship. (Sept. 30) Video provided by AP
Powered by NewsLook.com
2,000 Year Old Pre-Inca Cloak on Display in Lima

2,000 Year Old Pre-Inca Cloak on Display in Lima

AFP (Sep. 27, 2014) — A 2,000 year-old Pre-Inca cloak that is believed to represent an agricultural calendar of the Paracas culture is on display in Lima. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins