Featured Research

from universities, journals, and other organizations

Imaging dynamics of small biomolecules inside live cells

Date:
March 2, 2014
Source:
Columbia University
Summary:
A significant step has been made toward visualizing small biomolecules inside living biological systems with minimum disturbance, a longstanding goal in the scientific community. In a study, a research team describes its development of a general method to image a broad spectrum of small biomolecules, such as small molecular drugs and nucleic acids, amino acids, lipids for determining where they are localized and how they function inside cells.

Researchers at Columbia University have made a significant step toward visualizing small biomolecules inside living biological systems with minimum disturbance, a longstanding goal in the scientific community. In a study published March 2nd in Nature Methods, Assistant Professor of Chemistry Wei Min's research team has developed a general method to image a broad spectrum of small biomolecules, such as small molecular drugs and nucleic acids, amino acids, lipids for determining where they are localized and how they function inside cells.

When studying biological functions of a molecule in complex and mysterious cells, researchers typically label the molecules of interest with fluorophores, a kind of molecules that glow when illuminated. Using a fluorescence microscope, common in research labs, the fluorophore-tagged molecules can be located and tracked with high precision. The invention of green fluorescent protein (GFP), in 1994, compatible with imaging inside live cells and animals, has since made fluorescence microscopy even more popular.

However, when it comes to small biomolecules, fluorophore tagging is problematic, because the fluorophores are almost always larger or comparable in size to the small molecules of interest. As a result, they often disturb the normal functions of these small molecules with crucial biological roles.

To address this problem, Min and his team departed from the conventional paradigm of fluorescence imaging of fluorophores, and pursued a novel combination of physics and chemistry. Specifically, they coupled an emerging laser-based technique called stimulated Raman scattering (SRS) microscopy with a small but highly vibrant alkyne tag (that is, C=C, carbon-carbon triple bond), a chemical bond that, when it stretches, produces a strong Raman scattering signal at a unique "frequency" (different from natural molecules inside cells).

This new technique, labeling the small molecules with this tiny alkyne tag, avoids perturbation that occurs with large fluorescent tags, while obtaining high detection specificity and sensitivity by SRS imaging. By tuning the laser colors to the alkyne frequency and quickly scanning the focused laser beam across the sample, point-by-point, SRS microscopy can pick up the unique stretching motion of the C=C bond carried by the small molecules and produce a three-dimensional map of the molecules inside living cells and animals. In this way, Min's team demonstrated tracking alkyne-bearing drugs in mouse tissues and visualizing de novo synthesis of DNA, RNA, proteins, phospholipids and triglycerides through metabolic incorporation of alkyne-tagged small precursors in living cells.

"The major advantages of our technique lie in the superb sensitivity, specificity and biocompatibility with dynamics of live cells and animals for small molecule imaging," says the lead author Lu Wei, a Ph.D. candidate in chemistry.

Next, Min's team will apply this new technique to biomedical questions, such as detecting tumor cells and probing drug pharmacokinetics in animal models. They are also creating other alkyne-labeled biologically active molecules for more versatile imaging applications.

"Our new technique will open up numerous otherwise difficult studies on small biomolecules in live cells and animals," says Min. "In addition to basic research, our technique could also contribute greatly to translational applications. I believe SRS imaging of alkyne tags could do for small biomolecules what fluorescence imaging of fluorophores such as GFP has done for larger species."


Story Source:

The above story is based on materials provided by Columbia University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lu Wei, Fanghao Hu, Yihui Shen, Zhixing Chen, Yong Yu, Chih-Chun Lin, Meng C Wang, Wei Min. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nature Methods, 2014; DOI: 10.1038/nmeth.2878

Cite This Page:

Columbia University. "Imaging dynamics of small biomolecules inside live cells." ScienceDaily. ScienceDaily, 2 March 2014. <www.sciencedaily.com/releases/2014/03/140302143630.htm>.
Columbia University. (2014, March 2). Imaging dynamics of small biomolecules inside live cells. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2014/03/140302143630.htm
Columbia University. "Imaging dynamics of small biomolecules inside live cells." ScienceDaily. www.sciencedaily.com/releases/2014/03/140302143630.htm (accessed September 14, 2014).

Share This



More Matter & Energy News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Soccer Players' Feet to Generate Electricity

Soccer Players' Feet to Generate Electricity

AP (Sep. 11, 2014) A new energy-generating soccer field was inaugurated in Brazil. The field is built on energy-capturing tiles, allowing players to generate electricity as they run and compete. (Sept. 11) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins