Featured Research

from universities, journals, and other organizations

Potent HIV antibody research has opened up possibilities for HIV prevention, treatment

Date:
March 3, 2014
Source:
Wits University
Summary:
The discovery of how a KwaZulu-Natal woman’s body responded to her HIV infection by making potent antibodies (called broadly neutralizing antibodies, because they are able to kill multiple strains of HIV from across the world), has been reported by an international team of scientists. All HIV infected people respond to HIV by making antibodies. In most patients, these antibodies are not able to kill a wide range of HIV -- this is described as a lack of neutralization breadth. However, in a few infected people, they naturally make antibodies that kill (neutralize) many different kinds of HIV. The identification and successful cloning of these special antibodies enables the researchers to make sufficiently large quantities for further testing, similar to the way a medicine used to prevent or treat HIV would be tested.

The discovery of how a KwaZulu-Natal woman's body responded to her HIV infection by making potent antibodies (called broadly neutralizing antibodies, because they are able to kill multiple strains of HIV from across the world), was reported today by the CAPRISA consortium of AIDS researchers jointly with scientists from the United States.

Related Articles


The study, published in the scientific journal Nature describes how the research team found and identified these antibodies in her blood and then duplicated them by cloning the antibodies in the laboratory. The cloned antibodies were then used in a series of experiments in the laboratory to elucidate the pathway followed by her immune system to make these potent antibodies.

The South African researchers in the CAPRISA consortium, which includes scientists from Wits University, the National Institute for Communicable Diseases (NICD) in Johannesburg, the University of KwaZulu-Natal and the University of Cape Town, worked jointly with US partners based at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and Columbia University in New York, to conduct this research.

"In this new publication, we have been able to isolate a broadly neutralizing antibody from this CAPRISA volunteer and trace its origins to understand exactly how it arose. This could lead to new HIV vaccine strategies that are able to stimulate the rare precursors of these protective antibodies," says Professor Lynn Morris, from the National Health Laboratory Service in the Wits School of Pathology who leads the research team at the NICD.

Professor Salim S. Abdool Karim, leader of the CAPRISA consortium and President of the Medical Research Council, commented, "The new insights gained from this KwaZulu-Natal woman into immune responses against HIV bring hope for future HIV prevention and treatment strategies. This woman, referred to as CAPRISA 256 (abbreviated to CAP256), is doing well on antiretroviral therapy and continues to attend the CAPRISA clinic regularly."

Just over a year ago, the same team of South African researchers reported in Nature Medicine (also part of the Nature group of journals) on their discovery relating to two other KwaZulu-Natal women, that a shift in the position of one sugar molecule on the surface of the virus led to the development of broadly neutralizing antibodies against HIV.

All HIV infected people respond to HIV by making antibodies. In most patients, these antibodies are not able to kill a wide range of HIV -- this is described as a lack of neutralization breadth. However, in a few infected people, they naturally make antibodies that kill (neutralize) many different kinds of HIV (i.e. they are broadly neutralizing antibodies).

"Broadly neutralizing antibodies have some unusual features," says Dr Penny Moore, from Wits University and one of the lead South African scientists on the study based at the NICD. "The outer covering (envelope) of HIV has a coating of sugars that prevents antibodies from reaching the surface to neutralise the virus. In this patient, we found that her antibodies had 'long arms', which enabled them to reach through the sugar coat that protects HIV." In this study, the researchers found that these antibodies had 'long arms' right at the outset. "We discovered that some HIV antibodies are born with 'long arms', requiring less time and fewer changes to become effective in killing HIV," says Moore.

The identification and successful cloning of these special antibodies enables the researchers to make sufficiently large quantities for further testing, similar to the way a medicine used to prevent or treat HIV would be tested. "Our goal is to test these antibodies, preferably in combination with other broadly neutralizing antibodies, directly in patients with HIV infection or in patients at risk of getting infected," said Karim. "But this will take some time as the team is currently planning animal studies as a first step.

Broadly neutralizing antibodies have previously been shown to be effective in preventing and treating HIV infection in animals, but this has never before been shown in humans." The future studies on animals and humans are being supported by the Strategic Health Innovation Partnerships, a unit of the South African Medical Research Council, with funding from the Department of Science and Technology.

The Minister of Science and Technology, Mr Derek Hanekom, commented: "This study highlights the importance of international scientific partnerships and the contributions of South African researchers to world-class medical science. The Department of Science and Technology is delighted to have contributed funds for this research. We are proud of the South African research team who conducted this ground-breaking study and thank the US partners for their collaboration and support."

The Minister of Health, Dr Aaron Motsoaledi, pointed out: "Since South Africa has the largest burden of HIV infection globally, we are gratified to see South African scientists, under Professor Abdool Karim's leadership, undertake this research to find solutions that will bring an end to AIDS. We are hopeful that this research takes us one step closer to developing an AIDS vaccine."


Story Source:

The above story is based on materials provided by Wits University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicole A. Doria-Rose, Chaim A. Schramm, Jason Gorman, Penny L. Moore, Jinal N. Bhiman, Brandon J. DeKosky, Michael J. Ernandes, Ivelin S. Georgiev, Helen J. Kim, Marie Pancera, Ryan P. Staupe, Han R. Altae-Tran, Robert T. Bailer, Ema T. Crooks, Albert Cupo, Aliaksandr Druz, Nigel J. Garrett, Kam H. Hoi, Rui Kong, Mark K. Louder, Nancy S. Longo, Krisha McKee, Molati Nonyane, Sijy O’Dell, Ryan S. Roark, Rebecca S. Rudicell, Stephen D. Schmidt, Daniel J. Sheward, Cinque Soto, Constantinos Kurt Wibmer, Yongping Yang, Zhenhai Zhang, James C. Mullikin, James M. Binley, Rogier W. Sanders, Ian A. Wilson, John P. Moore, Andrew B. Ward, George Georgiou, Carolyn Williamson, Salim S. Abdool Karim, Lynn Morris, Peter D. Kwong, Lawrence Shapiro, John R. Mascola. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014; DOI: 10.1038/nature13036

Cite This Page:

Wits University. "Potent HIV antibody research has opened up possibilities for HIV prevention, treatment." ScienceDaily. ScienceDaily, 3 March 2014. <www.sciencedaily.com/releases/2014/03/140303083919.htm>.
Wits University. (2014, March 3). Potent HIV antibody research has opened up possibilities for HIV prevention, treatment. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/03/140303083919.htm
Wits University. "Potent HIV antibody research has opened up possibilities for HIV prevention, treatment." ScienceDaily. www.sciencedaily.com/releases/2014/03/140303083919.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins