Featured Research

from universities, journals, and other organizations

Convergent evolution: New fins evolve repeatedly in teleost fishes

Date:
March 5, 2014
Source:
University of Chicago Medical Center
Summary:
A new study analyzing the origins of the adipose fin, thought by some to be vestigial, finds that these fins arose repeatedly and independently in multiple species -- a striking example of convergent evolution. Adipose fins also appear to have repeatedly and independently evolved skeleton, offering a glimpse into the evolution of vertebrate appendages.

Adipose fin from a specimen at the Field Museum in Chicago.
Credit: Field Museum of Natural History

Though present in more than 6,000 living species of fish, the adipose fin, a small appendage that lies between the dorsal fin and tail, has no clear function and is thought to be vestigial. However, a new study analyzing their origins finds that these fins arose repeatedly and independently in multiple species. In addition, adipose fins appear to have repeatedly and independently evolved a skeleton, offering a glimpse into how new tissue types and structural complexity evolve in vertebrate appendages.

Adipose fins therefore represent a unique example of convergent evolution and new model for exploring the evolution of vertebrate limbs and appendages, report scientists from the University of Chicago in the Proceedings of the Royal Society B on March 5.

"Vertebrates in general have conserved body plans, and new appendages, whether fins or limbs, evolve rarely," said senior author Michael Coates, PhD, chair of the Committee on Evolutionary Biology at the University of Chicago. "Here, we have a natural experiment re-run repeatedly, providing a superb new system in which to explore novelty and change."

Usually small and structurally simple, adipose fins tend to get attention only when they are clipped from farm-raised trout and salmon as a tag. Despite their presence in thousands of fish species, they have been dismissed as a remnant of a once-functional fin. This assumption puzzled Stewart and co-authors, as they saw no evidence of deterioration in adipose fin structure or function in the fossil record.

To study the evolutionary origins of this fin, Coates and lead author Thomas Stewart, graduate student in organismal biology and anatomy at the University of Chicago, turned to a technique known as ancestral-state reconstruction. With co-author W. Leo Smith, PhD, from the Biodiversity Institute at the University of Kansas, they created an evolutionary tree describing the relationships between fish with and without adipose fins, using genetic information from more than 200 ray-finned fish and fossil data from known time points. They then used statistical models to predict when and in what species the adipose fin might have first evolved.

They found that adipose fins originated multiple times, independently, in catfish and other groups of ray-finned fishes -- a striking example of convergent evolution over a vast range of species.

"It's pretty incredible that a structure which is incredibly common could be so misunderstood," Stewart said. "Our finding, that adipose fins have evolved repeatedly, shows that this structure, long assumed to be more-or-less useless, might be very important to some fishes. It's exciting because it opens up new questions."

More than 600 species of fish were studied in the course of this research, including many from the collections of the Field Museum of Natural History in Chicago. This analysis revealed that a number of complex skeletal structures, including spines, plates, fin rays and cartilage discs, evolved independently in the adipose fins of different species. And while studies of the fossil record have suggested that new fins originate in a predictable and repeated manner, adipose fins demonstrate multiple routes to building new appendages.

"These results challenge what was generally thought for how new fins and limbs evolve, and shed new light on ways to explore the full range of vertebrate limb and fin diversity," Stewart notes.

The study was supported by the National Science Foundation and the University of Chicago Division of Biological Sciences.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. A. Stewart, W. L. Smith, M. I. Coates. The origins of adipose fins: an analysis of homoplasy and the serial homology of vertebrate appendages. Proceedings of the Royal Society B: Biological Sciences, 2014; 281 (1781): 20133120 DOI: 10.1098/rspb.2013.3120

Cite This Page:

University of Chicago Medical Center. "Convergent evolution: New fins evolve repeatedly in teleost fishes." ScienceDaily. ScienceDaily, 5 March 2014. <www.sciencedaily.com/releases/2014/03/140305084406.htm>.
University of Chicago Medical Center. (2014, March 5). Convergent evolution: New fins evolve repeatedly in teleost fishes. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2014/03/140305084406.htm
University of Chicago Medical Center. "Convergent evolution: New fins evolve repeatedly in teleost fishes." ScienceDaily. www.sciencedaily.com/releases/2014/03/140305084406.htm (accessed September 18, 2014).

Share This



More Plants & Animals News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins