Featured Research

from universities, journals, and other organizations

Mathematical, biochemical 'design features' for cell decoding of pulses revealed

Date:
March 13, 2014
Source:
University of Bristol
Summary:
Every cell in the body has to sense and respond to chemicals such as hormones and neurotransmitters. They do so by relaying information from receptors to intracellular biochemical pathways that control cell behavior, but relatively little is known about how cells decode the information in dynamic stimuli. Researchers have found that differences in response kinetics working down the intracellular signalling pathway dictate differential sensitivity to different features of pulsatile hormone inputs.

GnRH-stimulated cells stained for ppERK (green), ERK (red) and ppERK (blue).
Credit: Image courtesy of University of Bristol

Every cell in the body has to sense and respond to chemicals such as hormones and neurotransmitters. They do so by relaying information from receptors to intracellular biochemical pathways that control cell behaviour, but relatively little is known about how cells decode the information in dynamic stimuli.

A team of researchers has found that differences in response kinetics working down the intracellular signalling pathway dictate differential sensitivity to different features of pulsatile hormone inputs.

The study funded by the BBSRC and published in the Journal of Biological Chemistry, explored mechanism underlying dynamic gonadotropin-releasing hormone (GnRH) signalling using live cell imaging and mathematical modelling.

The research team, led by Craig McArdle, Professor of Molecular Pharmacology at the University of Bristol's School of Clinical Sciences, in collaboration with the University of Exeter, focused on the ERK signalling pathway as this enzyme is activated by GnRH pulses and is essential for normal reproduction.

The neuropeptide hormone GnRH is secreted in pulses from neurons in the hypothalamus and controls secretion of two pituitary hormones, the LH and FSH that, in turn, control production of germ cells and sex steroids.

This system provides the interface between the brain and the reproductive system. It is absolutely essential for normal reproduction and is targeted therapeutically in assisted reproduction and in the treatment of hormone-dependent diseases, such as breast and prostate cancer.

The study found that for effects on gene expression the system is more sensitive to changes in GnRH receptor number than it is to changes in GnRH concentration, and is more sensitive to changes in GnRH interval than it is to changes in GnRH pulse width.

Professor Craig McArdle said: "The work revealed "design-features" of the system that make perfect sense in light of the biology, where GnRH receptor number and GnRH pulse interval vary, for example, through puberty and through the menstrual cycle.

"These features are relevant to numerous biological systems using pulsatile stimuli and suggest intriguing mechanisms for differential control of rapid and delayed responses with dynamic stimuli."

Professor Krasimira Tsaneva-Atanasova, Associate Professor of Mathematics at the University of Exeter and co-author on the paper said: "The effects of a signalling molecule can be fast or slow and the same signalling molecule will often elicit a rapid, transient response from a cell followed by a slower, long term change in cell behaviour.

"How fast and slow molecular pathways are modulated by pulsatile, or dynamic, inputs is particularly important for understanding GnRH signalling in physiologically relevant stimulation paradigms and identifying new tools that could be used for fertility control and treatment of hormone-dependent cancer."

Billions are spent every year on GnRH receptor ligands and the stimulation paradigm is absolutely crucial for therapeutic applications, but remarkably little is known about how the target cells and tissues decode GnRH dynamics.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. M. Perrett, M. Voliotis, S. P. Armstrong, R. C. Fowkes, G. R. Pope, K. Tsaneva-Atanasova, C. A. McArdle. Pulsatile Hormonal Signaling to Extracellular Signal-regulated Kinase: EXPLORING SYSTEM SENSITIVITY TO GONADOTROPIN-RELEASING HORMONE PULSE FREQUENCY AND WIDTH. Journal of Biological Chemistry, 2014; 289 (11): 7873 DOI: 10.1074/jbc.M113.532473

Cite This Page:

University of Bristol. "Mathematical, biochemical 'design features' for cell decoding of pulses revealed." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313111908.htm>.
University of Bristol. (2014, March 13). Mathematical, biochemical 'design features' for cell decoding of pulses revealed. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/03/140313111908.htm
University of Bristol. "Mathematical, biochemical 'design features' for cell decoding of pulses revealed." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313111908.htm (accessed August 30, 2014).

Share This




More Plants & Animals News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) — Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) — An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins