Featured Research

from universities, journals, and other organizations

Anti-counterfeit 'fingerprints' made from silver nanowires

Date:
March 20, 2014
Source:
Institute of Physics
Summary:
Unique patterns made from tiny, randomly scattered silver nanowires have been created by a group of researchers from South Korea in an attempt to authenticate goods and tackle the growing problem of counterfeiting.

Unique patterns made from tiny, randomly scattered silver nanowires have been created by a group of researchers from South Korea in an attempt to authenticate goods and tackle the growing problem of counterfeiting.

Related Articles


The nanoscale 'fingerprints' are made by randomly dumping 20 to 30 individual nanowires, each with an average length of 10 to 50 m, onto a thin plastic film, and could be used to tag a variety of goods from electronics and drugs to credit cards and bank notes.

They have been presented in a paper published today, 21 March, in IOP Publishing's journal Nanotechnology.

According to the researchers, the fingerprints are almost impossible to replicate because of the natural randomness of their creation and the difficulty associated with manipulating such small materials.

Lead author of the research Professor Hyotcherl Ihee, from the Korea Advanced Institute of Science and Technology (KAIST) and Institute for Basic Science (IBS), said: "It is nearly impossible to replicate the fingerprints due to the difficulty in trying to manipulate the tiny nanowires into a desired pattern. The cost of generating such an identical counterfeit pattern would generally be much higher than the value of the typical product being protected."

The researchers estimate that the fingerprints could be produced at a cost of less than $1 per single pattern, which was demonstrated in their study by synthesizing a solution containing individual silver nanowires, coating the nanowires with silica, doping them with specific fluorescent dyes and then randomly dropping them onto a transferable film made from flexible polyethylene terephthalate (PET).

The fluorescent dyes allowed the patterns, which are invisible to the naked eye, to be visually identified and authenticated under an optical microscope and could add another layer of complexity to the 'fingerprints' if a number of different coloured dyes are used.

The researchers believe the fingerprints could also be tagged with a unique ID, or barcode, which could facilitate a quick search in a database and ease the process of authentication or counterfeit identification.

"Once a pattern is tagged and stored on a database using a unique ID, a certain substrate, whether this is a bank note or a credit card, could be authenticated almost immediately by observing the fluorescence images and comparing it with stored images," continued Professor Ihee.

"These authentication processes can be automated by employing an algorithm that recognises the positions and colours of the silver nanowires and digitizes that information in a database. Such digitized information could significantly reduce the size of the stored data and reduce the time required for the authentication process."

According to the World Customs Organisation, around six per cent of global traded goods are counterfeit, which the researchers believe could be reduced by using their technique to authenticate goods.

"Compared to other anti-counterfeit methods, the fingerprints are cheap and simple to produce, they are extremely difficult to replicate and can be authenticated very straightforwardly," concluded Professor Ihee.


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jangbae Kim, Je Moon Yun, Jongwook Jung, Hyunjoon Song, Jin-Baek Kim, Hyotcherl Ihee. Anti-counterfeit nanoscale fingerprints based on randomly distributed nanowires. Nanotechnology, 2014; 25 (15): 155303 DOI: 10.1088/0957-4484/25/15/155303

Cite This Page:

Institute of Physics. "Anti-counterfeit 'fingerprints' made from silver nanowires." ScienceDaily. ScienceDaily, 20 March 2014. <www.sciencedaily.com/releases/2014/03/140320214733.htm>.
Institute of Physics. (2014, March 20). Anti-counterfeit 'fingerprints' made from silver nanowires. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/03/140320214733.htm
Institute of Physics. "Anti-counterfeit 'fingerprints' made from silver nanowires." ScienceDaily. www.sciencedaily.com/releases/2014/03/140320214733.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins