Featured Research

from universities, journals, and other organizations

Cholesterol transporter structure decoded

Date:
March 21, 2014
Source:
DZNE - German Center for Neurodegenerative Diseases
Summary:
For the first time, scientists have solved the high-resolution structure of the molecular transporter TSPO, which introduces cholesterol into mitochondria. This protein also serves as a docking site for diagnostic markers and different drugs, such as Valium. The detailed knowledge of its 3-D shape and function opens up new diagnostic and therapeutic perspectives.

The cholesterol transporter TSPO in the outer mitochondrial membrane serves as a docking site for important diagnostic markers and for a number of drugs such as diazepam.
Credit: Łukasz Jaremko, Mariusz Jaremko, Markus Zweckstetter / DZNE, Max Planck Institute for Biophysical Chemistry and UMG

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential to our wellbeing: It stabilizes cell membranes and is a raw material for the production of different hormones in the cell's power plants -- the mitochondria. Now, for the first time, scientists in Göttingen have solved the high-resolution structure of the molecular transporter TSPO, which introduces cholesterol into mitochondria. This protein also serves as a docking site for diagnostic markers and different drugs, such as Valium. The detailed knowledge of its three-dimensional shape and function opens up new diagnostic and therapeutic perspectives.

Not only are mitochondria the most important energy supplier in living cells. They also produce steroid hormones such as testosterone and oestradiol, which control many processes in the body. The raw material for the production of steroid hormones is cholesterol, which must first be transported into mitochondria across two membranes. This difficult task is carried out by a molecular transport protein named TSPO in the outer mitochondrial membrane. Using nuclear magnetic resonance spectroscopy, two teams working with the Göttingen-based scientists Markus Zweckstetter and Stefan Becker have now shown the complex three-dimensional structure of the protein "at work" in atomic detail.

The researchers achieved this methodical breakthrough by applying an ingenious trick: In their experiments, they coupled the transporter to an important diagnostic marker called PK11195; it was this complex that first gave the scientists analyzable results. In fact, the TSPO structure delivers more than just clues about how cholesterol is transported into the mitochondria. "We now also have a much better understanding of how TSPO recognizes and binds to diagnostic markers and drugs," explains Markus Zweckstetter, head of research groups at the German Center for Neurodegenerative Diseases (DZNE), at the Max Planck Institute for Biophysical Chemistry, and at the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center of Göttingen (UMG).

TSPO has long been successfully used in diagnostics and treatment of a number of diseases. "When the brain is injured or inflamed, its cells produce more TSPO. This fact is used in the diagnosis of neurodegenerative diseases such as Parkinson's and Alzheimer's," explains Stefan Becker, a protein chemist and Max Planck researcher who works next door to Zweckstetter.

Physicians also use radioactively tagged molecules such as PK11195 to visualize inflamed areas of the brain. A detailed understanding of how TSPO binds to such markers opens up novel paths for diagnostic imaging and could constitute an important step along the way to early detection of such diseases and inflammations.

TSPO also binds several medicinal drugs such as diazepam, also known by the trade name of Valium. Not only is diazepam a widely prescribed sedative; it is also used in the treatment of anxiety and epileptic seizures. The Göttingen researchers hope that detailed information about the transporter's structure will help to develop new TSPO-binding drugs.


Story Source:

The above story is based on materials provided by DZNE - German Center for Neurodegenerative Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1.  ukasz Jaremko, M. Jaremko, K. Giller, S. Becker, M. Zweckstetter. Structure of the Mitochondrial Translocator Protein in Complex with a Diagnostic Ligand. Science, 2014; 343 (6177): 1363 DOI: 10.1126/science.1248725

Cite This Page:

DZNE - German Center for Neurodegenerative Diseases. "Cholesterol transporter structure decoded." ScienceDaily. ScienceDaily, 21 March 2014. <www.sciencedaily.com/releases/2014/03/140321095342.htm>.
DZNE - German Center for Neurodegenerative Diseases. (2014, March 21). Cholesterol transporter structure decoded. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/03/140321095342.htm
DZNE - German Center for Neurodegenerative Diseases. "Cholesterol transporter structure decoded." ScienceDaily. www.sciencedaily.com/releases/2014/03/140321095342.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins