Featured Research

from universities, journals, and other organizations

New approach to leukemia testing may better define prognosis, treatment

Date:
March 29, 2014
Source:
Medical College of Georgia at Georgia Regents University
Summary:
Nearly half of patients with the most common form of adult leukemia are said to have normal chromosomes but appear instead to have a distinct pattern of genetic abnormalities that could better define their prognosis and treatment, researchers report. In new work using microarray technology that probes millions of genes within chromosomes, researchers found the unique pattern in the leukemia cells of 22 patients diagnosed with cytogenetically normal acute myelogenous leukemia.

Pictured are Dr. Amyn Rojiani, Chairman of the MCG Department of Pathology (left) and Dr. Ravindra Kolhe, molecular pathologist at the Medical College of Georgia at Georgia Regents University.
Credit: Phil Jones

Nearly half of patients with the most common form of adult leukemia are said to have normal chromosomes but appear instead to have a distinct pattern of genetic abnormalities that could better define their prognosis and treatment, researchers report.

Using microarray technology that probes millions of genes within chromosomes, researchers found the unique pattern in the leukemia cells of 22 patients diagnosed with cytogenetically normal acute myelogenous leukemia, said Dr. Ravindra Kolhe, molecular pathologist at the Medical College of Georgia at Georgia Regents University.

"This is a total game changer," Kolhe said. "We have to use more sensitive tests to give patients the proper answer."

Kolhe, Director of the Georgia Esoteric, Molecular Labs, LLC, Department of Pathology, presented the findings March 29 during the American College of Medical Genetics and Genomics Annual Clinical Genetics Meeting in Nashville.

Acute myelogenous leukemia, the most common type of acute leukemia in adults, has about 20 subtypes, according to the National Cancer Institute. Patients with cytogenetically normal acute myelogenous leukemia experience widely varying outcomes following chemotherapy and bone marrow transplants. Ideally, identifying the causative genes will lead to a more targeted therapy and definitive prognosis, Kolhe said.

"The technology we currently use can't identify specifically what's wrong," Kolhe said. Patients have high percentages of cancer-producing cells called blasts in their blood and bone marrow but they do not show the distinctive chromosomal alterations that typically help characterize the leukemia and strategize therapy.

Genetic abnormalities, inherited and/or caused by environmental exposures -- including previous chemotherapy and radiation treatment -- are thought to cause leukemia. The result is that a disproportionate number of stem cells get stuck in the blast, or cancerous, stage, rather than maturing to white blood cells that actually fight cancer and other invaders.

Patients often feel tired and feverish and blood tests reveal high blast levels. Pathologists then take about 20 leukemia cells, chemically block their constant division, open the nucleus, and spread the chromosomes on a slide. They examine the chromosomes with a microscope and in-situ hybridization technology, which helps detect small deletions or rearrangements.

"(Cytogenetically normal patients) show a normal chromosomal picture but they are clearly sick," Kolhe said. Frustrated at being unable to give these patients better information, he partnered with California-based Affymetrix to look directly at the genes within chromosomes using CytoScanHD microarray technology.

When he put cell contents instead on a computer chip with 2.7 million genetic probes, small, previously undetectable changes in the DNA became apparent in patients who had been classified as cytogenetically normal. In fact, every patient who looked normal under the microscope showed a consistent pattern. "It's the same finding in all 22 patients," Kolhe said.

He's continuing to collect patient data and is replicating the same genetic defects in mice to confirm that they cause leukemia.

Microarray technology is a research tool now finding a clinical presence. In January, Affymetrix received approval from the Food and Drug Administration to use its CytoScanฎ DX Assay to help diagnose developmental and intellectual disabilities in children.

Starting this summer, the Georgia Esoteric, Molecular Labs LLC at MCG will use this state-of-the-art technology to identify genetic disorders in children, while continuing to advance understanding of similar applications in cancer, said Dr. Amyn Rojiani, Chairman of the MCG Department of Pathology.


Story Source:

The above story is based on materials provided by Medical College of Georgia at Georgia Regents University. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia at Georgia Regents University. "New approach to leukemia testing may better define prognosis, treatment." ScienceDaily. ScienceDaily, 29 March 2014. <www.sciencedaily.com/releases/2014/03/140329175116.htm>.
Medical College of Georgia at Georgia Regents University. (2014, March 29). New approach to leukemia testing may better define prognosis, treatment. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/03/140329175116.htm
Medical College of Georgia at Georgia Regents University. "New approach to leukemia testing may better define prognosis, treatment." ScienceDaily. www.sciencedaily.com/releases/2014/03/140329175116.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) — Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) — New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) — Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins