Featured Research

from universities, journals, and other organizations

Startlingly new functional details of common anti-diabetic drugs discovered

Date:
April 7, 2014
Source:
The Scripps Research Institute
Summary:
Scientists thought they basically knew how the most common drugs used to treat type 2 diabetes worked, but a new study reveals unexpected new aspects of the process. These findings could eventually lead to more potent anti-diabetic drugs with fewer serious side effects.

Scientists thought they basically knew how the most common drugs used to treat type 2 diabetes worked, but a new study from the Florida campus of The Scripps Research Institute (TSRI) reveals unexpected new aspects of the process. These findings could eventually lead to more potent anti-diabetic drugs with fewer serious side effects.

Related Articles


The study was published in the April 7, 2014 issue of the journal Nature Communications.

The most common type 2 diabetes treatments are known as insulin-sensitizing drugs, which improve how the body responds to glucose or sugar. These drugs mimic naturally occurring compounds that bind to a specific intracellular receptor (peroxisome proliferator-activated receptor-γ or PPARG), altering its activity.

While these drugs were widely thought to bind to a single site on the receptor, the new study shows they also bind to an alternative site, leading to unique changes in receptor shape, which affects interaction with co-regulating protein partners and gene expression.

Douglas Kojetin, an associate professor at TSRI who led the study, called the discovery serendipitous -- and revealing.

"It turns out that binding to PPARG is far more complex than anyone previously understood," he said. "You don't have to displace the naturally occurring ligand [binding partner] with a synthetically designed drug to regulate the receptor because you have this alternative site."

Kojetin and his colleagues made the alternative binding site discovery using a far simpler mapping technique than had previously been applied to determine the receptor's structure.

"We used a technique that yields easy-to-interpret results, one that you wouldn't normally use to look at how drugs bind a receptor," said Research Associate Travis Hughes, the first author of the study and a member of Kojetin's lab. "Instead of finding one site, we realized we had two and wanted to know what the second one was doing."

The scientists note that while they don't yet know the full effect of the alternate binding site's function, it might provide a clue to insulin-sensitizing drugs' adverse effects, which include risk of bone loss and congestive heart failure.

"The question going forward is 'Does this alternative site contribute to side effects, beneficial effects or both?'" said Kojetin. "Knowledge of this alternate binding site may help produce a new generation of anti-diabetic drugs."


Story Source:

The above story is based on materials provided by The Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Travis S. Hughes, Pankaj Kumar Giri, Ian Mitchelle S. de Vera, David P. Marciano, Dana S. Kuruvilla, Youseung Shin, Anne-Laure Blayo, Theodore M. Kamenecka, Thomas P. Burris, Patrick R. Griffin, Douglas J. Kojetin. An alternate binding site for PPARγ ligands. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4571

Cite This Page:

The Scripps Research Institute. "Startlingly new functional details of common anti-diabetic drugs discovered." ScienceDaily. ScienceDaily, 7 April 2014. <www.sciencedaily.com/releases/2014/04/140407090355.htm>.
The Scripps Research Institute. (2014, April 7). Startlingly new functional details of common anti-diabetic drugs discovered. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2014/04/140407090355.htm
The Scripps Research Institute. "Startlingly new functional details of common anti-diabetic drugs discovered." ScienceDaily. www.sciencedaily.com/releases/2014/04/140407090355.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
Your Genes Could Influence How Much Mosquitoes Love You

Your Genes Could Influence How Much Mosquitoes Love You

Newsy (Apr. 23, 2015) New research suggests genetics play a big part in how appetizing you smell to mosquitoes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins