Featured Research

from universities, journals, and other organizations

One kind of supersymmetry shown to emerge naturally: Unique phenomenon in condensed matter system

Date:
April 9, 2014
Source:
University of California - Santa Barbara
Summary:
Physicists show that a topological superconductor is conducive to displaying phenomena of emergent supersymmetry. Sought after in the realm of subatomic particles by physicists for several decades, supersymmetry describes a unique relationship between particles.

Supersymmetry in a three-dimensional topological superconductor: Ising magnetic fluctuations (denoted by red arrows) at the boundary couple to the fermions (blue cone).
Credit: Image courtesy of University of California - Santa Barbara

UC Santa Barbara physicist Tarun Grover has provided definitive mathematical evidence for supersymmetry in a condensed matter system. Sought after in the realm of subatomic particles by physicists for several decades, supersymmetry describes a unique relationship between particles.

"As yet, no one has found supersymmetry in our universe, including at the Large Hadron Collider (LHC)," said the associate specialist at UCSB's Kavli Institute for Theoretical Physics (KITP). He is referring to the underground laboratory in Switzerland where the famous Higgs boson was identified in 2012. "This is a fresh insight as to how supersymmetry arises in nature." The findings of Grover's research, conducted with colleagues Donna Sheng and Ashvin Vishwanath, appear in the current online edition of the journal Science.

The fundamental constituents of matter -- electrons, quarks and their relatives -- are fermions. The particles associated with fundamental forces are called bosons. Several decades ago, physicists hypothesized that every type of particle in the Standard Model of particle physics, a theory that captures the dynamics of known subatomic particles, has one or more superpartners -- other types of particles that share many of the same properties but differ in a crucial way.

If a particle is a fermion, its superpartner is a boson, and if a particle is a boson, its superpartner is a fermion. This is supersymmetry, a postulated unique theoretical symmetry of space.

While the Standard Model governing the ordinary world is not supersymmetric, it is often theorized that the more "fundamental" theory relevant to very hot systems, such as those probed in high-energy particle accelerators like the LHC (or higher energy ones yet to be built), might exhibit supersymmetry. This has yet to be proved or disproved by accelerator experiments.

However, through their calculations, Grover and his co-authors show that supersymmetry emerges naturally in a topological superconductor. An example is helium-3, a light, nonradioactive isotope of helium with two protons and one neutron (common helium has two neutrons). When helium-3 is cooled to almost absolute zero (0 Kelvin), it becomes a liquid superconductor. As understood only recently, the boundary of its container features fermions.

"The reason these fermions exist is related to time-reversal symmetry, which is unrelated to supersymmetry," said Grover. A video of an object tossed vertically up in the air is a good example of time-reversal symmetry. When the video is played back, it shows the object following the same parabolic trajectory through the air as it did when the video was played normally. "We wanted to see what would happen to these fermions when time-reversal symmetry was broken," Grover explained.

The scientists theorized that the application of a specified amount of magnetic field to the surface of the container would break the time-reversal symmetry. This, in turn, would cause the fermions to disappear due to their interaction with bosons that already exist in the liquid helium-3. Grover and his coauthors found that right at the point when fermions are about to disappear, the fermions and the bosons behave as superpartners of each other, thus providing a condensed matter analog of supersymmetry.

According to physicists, if supersymmetry can be proved in high-energy experiments, it opens the door to answers that physicists have been seeking for years and may pave the way to analyze and even integrate different fundamental physics theories such as quantum field theory, string theory and Einstein's relativity.

"Grover's team shows that supersymmetry may be studied in low-energy experiments," said physics professor Leon Balents, Grover's colleague at KITP. "This would be amazing in its own right and could serve as an inexpensive tabletop model for what to look for at particle accelerators."

"Our paper provides insight into how and in what systems supersymmetry may emerge in a very natural way," Grover said. "Maybe it doesn't exist in our actual universe, but there exist these condensed matter systems, such as topological superconductors, where supersymmetry can exist. This opens the window for experimentalists to go and test supersymmetry and its exciting consequences in real life."


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. The original article was written by Julie Cohen. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Barbara. "One kind of supersymmetry shown to emerge naturally: Unique phenomenon in condensed matter system." ScienceDaily. ScienceDaily, 9 April 2014. <www.sciencedaily.com/releases/2014/04/140409155748.htm>.
University of California - Santa Barbara. (2014, April 9). One kind of supersymmetry shown to emerge naturally: Unique phenomenon in condensed matter system. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/04/140409155748.htm
University of California - Santa Barbara. "One kind of supersymmetry shown to emerge naturally: Unique phenomenon in condensed matter system." ScienceDaily. www.sciencedaily.com/releases/2014/04/140409155748.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins