Featured Research

from universities, journals, and other organizations

Enzyme 'wrench' could be key to stronger, more effective antibiotics

Date:
April 10, 2014
Source:
North Carolina State University
Summary:
Builders and factory workers know that getting a job done right requires precision and specialized tools. The same is true when you're building antibiotic compounds at the molecular level. New findings may turn an enzyme that acts as a specialized 'wrench' in antibiotic assembly into a set of wrenches that will allow for greater customization.

Builders and factory workers know that getting a job done right requires precision and specialized tools. The same is true when you're building antibiotic compounds at the molecular level. New findings from North Carolina State University may turn an enzyme that acts as a specialized "wrench" in antibiotic assembly into a set of wrenches that will allow for greater customization. By modifying this enzyme, scientists hope to be able to design and synthesize stronger, more adaptable antibiotics from less expensive, natural compounds.

Related Articles


Kirromycin is a commonly known antibiotic that can be created through natural synthesis; that is, it doesn't have to be made in a chemistry lab. Nature creates compounds like kirromycin through a factory-like assembly line of enzymes where each performs a specific function, snapping different fragments of molecules together like a jigsaw puzzle. Understanding this process on the molecular level could give chemists the ability to piggyback on nature, synthesizing new antibiotics and cancer drugs with less waste and expense.

NC State chemist Gavin Williams looked at one enzyme in the kirromycin assembly line -- KirCII -- which is responsible for installing a molecular fragment of kirromycin at one key location. "KirCII is a linchpin enzyme in the assembly," Williams says. "Natural compounds like kirromycin get built in pieces, with small modules, or blocks of enzymes, linking up sections of the compound in a certain order. Enzymes like KirCII are the wrenches that install the molecular pieces -- without them, the molecule doesn't finish assembling properly."

Williams and his team performed a molecular analysis of KirCII to determine why and how it latches onto a specific protein within the kirromycin assembly line. They saw that the enzyme has electrical charges on its surface that are complementary to opposite charges on the surface of the protein it binds with. When KirCII finds that protein, the charges match up and it snaps into place.

"We were able to see which areas on KirCII had charges that worked with the target protein," Williams says. "Hopefully we will be able to use this information to introduce complementary charges onto the surface of other proteins we want KirCII to bind with.

"Right now KirCII is just one wrench. By modifying it to fit other proteins, we could turn it into a set of different wrenches and create totally different antibiotics. Kirromycin isn't very useful right now, but by using KirCII to install pieces from other antibiotics, we'll be able to mix and match and create new, stronger antibiotics."


Story Source:

The above story is based on materials provided by North Carolina State University. The original article was written by Tracey Peake. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhixia Ye, Ewa M. Musiol, Tilmann Weber, Gavin J. Williams. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase. Chemistry and Biology, April 2014 DOI: 10.1016/j.chembiol.2014.02.019

Cite This Page:

North Carolina State University. "Enzyme 'wrench' could be key to stronger, more effective antibiotics." ScienceDaily. ScienceDaily, 10 April 2014. <www.sciencedaily.com/releases/2014/04/140410122159.htm>.
North Carolina State University. (2014, April 10). Enzyme 'wrench' could be key to stronger, more effective antibiotics. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2014/04/140410122159.htm
North Carolina State University. "Enzyme 'wrench' could be key to stronger, more effective antibiotics." ScienceDaily. www.sciencedaily.com/releases/2014/04/140410122159.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins