Featured Research

from universities, journals, and other organizations

NASA's Hubble extends stellar tape measure 10 times farther into space

Date:
April 11, 2014
Source:
NASA/Goddard Space Flight Center
Summary:
Astronomers now can precisely measure the distance of stars up to 10,000 light-years away -- 10 times farther than previously possible. Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble's accuracy for making angular measurements. The technique, when applied to the age-old method for gauging distances called astronomical parallax, extends Hubble's tape measure 10 times farther into space.

By applying a technique called spatial scanning to an age-old method for gauging distances called astronomical parallax, scientists now can use NASA’s Hubble Space Telescope to make precision distance measurements 10 times farther into our galaxy than previously possible.
Credit: NASA/ESA, A.Feild/STScI

Using NASA's Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away -- 10 times farther than previously possible.

Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble's accuracy for making angular measurements. The technique, when applied to the age-old method for gauging distances called astronomical parallax, extends Hubble's tape measure 10 times farther into space.

"This new capability is expected to yield new insight into the nature of dark energy, a mysterious component of space that is pushing the universe apart at an ever-faster rate," said Noble laureate Adam Riess of the Space Telescope Science Institute (STScI) in Baltimore, Md.

Parallax, a trigonometric technique, is the most reliable method for making astronomical distance measurements, and a practice long employed by land surveyors here on Earth. The diameter of Earth's orbit is the base of a triangle and the star is the apex where the triangle's sides meet. The lengths of the sides are calculated by accurately measuring the three angles of the resulting triangle.

Astronomical parallax works reliably well for stars within a few hundred light-years of Earth. For example, measurements of the distance to Alpha Centauri, the star system closest to our sun, vary only by one arc second. This variance in distance is equal to the apparent width of a dime seen from two miles away.

Stars farther out have much smaller angles of apparent back-and-forth motion that are extremely difficult to measure. Astronomers have pushed to extend the parallax yardstick ever deeper into our galaxy by measuring smaller angles more accurately.

This new long-range precision was proven when scientists successfully used Hubble to measure the distance of a special class of bright stars called Cepheid variables, approximately 7,500 light-years away in the northern constellation Auriga. The technique worked so well, they are now using Hubble to measure the distances of other far-flung Cepheids.

Such measurements will be used to provide firmer footing for the so-called cosmic "distance ladder." This ladder's "bottom rung" is built on measurements to Cepheid variable stars that, because of their known brightness, have been used for more than a century to gauge the size of the observable universe. They are the first step in calibrating far more distant extra-galactic milepost markers such as Type Ia supernovae.

Riess and the Johns Hopkins University in Baltimore, Md., in collaboration with Stefano Casertano of STScI, developed a technique to use Hubble to make measurements as small as five-billionths of a degree.

To make a distance measurement, two exposures of the target Cepheid star were taken six months apart, when Earth was on opposite sides of the sun. A very subtle shift in the star's position was measured to an accuracy of 1/1,000 the width of a single image pixel in Hubble's Wide Field Camera 3, which has 16.8 megapixels total. A third exposure was taken after another six months to allow for the team to subtract the effects of the subtle space motion of stars, with additional exposures used to remove other sources of error.

Riess shares the 2011 Nobel Prize in Physics with another team for his leadership in the 1998 discovery the expansion rate of the universe is accelerating -- a phenomenon widely attributed to a mysterious, unexplained dark energy filling the universe. This new high-precision distance measurement technique is enabling Riess to gauge just how much the universe is stretching. His goal is to refine estimates of the universe's expansion rate to the point where dark energy can be better characterized.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. STScI conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "NASA's Hubble extends stellar tape measure 10 times farther into space." ScienceDaily. ScienceDaily, 11 April 2014. <www.sciencedaily.com/releases/2014/04/140411091943.htm>.
NASA/Goddard Space Flight Center. (2014, April 11). NASA's Hubble extends stellar tape measure 10 times farther into space. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/04/140411091943.htm
NASA/Goddard Space Flight Center. "NASA's Hubble extends stellar tape measure 10 times farther into space." ScienceDaily. www.sciencedaily.com/releases/2014/04/140411091943.htm (accessed October 1, 2014).

Share This



More Space & Time News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Astronomers Spot Largest, Brightest Solar Flare Ever

Astronomers Spot Largest, Brightest Solar Flare Ever

Newsy (Oct. 1, 2014) — The initial blast from the record-setting explosion would have appeared more than 10,000 times more powerful than any flare ever recorded. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins