Featured Research

from universities, journals, and other organizations

Bulletproof nuclei? Stem cells exhibit unusual absorption property

Date:
April 20, 2014
Source:
University of Cambridge
Summary:
Stem cells -- the body's master cells -- demonstrate a bizarre property never before seen at a cellular level, according to a study. The property -- known as auxeticity -- is one which may have application as wide-ranging as soundproofing, super-absorbent sponges and bulletproof vests. Most materials when stretched will contract. The opposite is also true: squeeze a material and it will expand. However, material scientists have begun to explore auxeticity, an unusual property which has the opposite effect -- squeeze it and it will contract, stretch it and it will expand. This means that auxetic materials act as excellent shock absorbers or sponges, a fact that is being explored for various uses.

Stem cells -- the body's master cells -- demonstrate a bizarre property never before seen at a cellular level, according to a study published today from scientists at the University of Cambridge. The property -- known as auxeticity -- is one which may have application as wide-ranging as soundproofing, super-absorbent sponges and bulletproof vests.

Most materials when stretched will contract. For example, if one pulls on an elastic band, the elastic itself will get thinner. The opposite is also true: squeeze a material and it will expand -- for example, if one squeezes a tennis ball between both hands, the circumference around the ball gets larger. However, material scientists have begun to explore auxeticity, an unusual property which has the opposite effect -- squeeze it and it will contract, stretch it and it will expand. This means that auxetic materials act as excellent shock absorbers or sponges, a fact that is being explored for various uses.

Until now, auxeticity has only been demonstrated in humanmade materials and very rarely in nature, such as some species of sponge. But today, in a paper published in the journal Nature Materials, a team of University of Cambridge researchers including biologists, engineers and physicists, report having observed auxeticity in the nuclei of embryonic stem cells, master cells within the body which can turn into any other type of cell.

Dr Kevin Chalut from the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, who led the study, says: "This is a pretty bizarre finding and very unexpected. When the stem cell is in the process of transforming into a particular type of cell, its nucleus takes on an auxetic property, allowing it to 'sponge up' essential materials from its surrounding. This property has not, to my knowledge, been seen before at a cellular level and is highly unusual in the natural world."

The auxetic properties only appear in the stem cell's nucleus when it is in the transition stage, changing from an embryonic, non-specific stem cell into a differentiated, tissue-specific cell, such as a heart tissue cell. Dr Chalut and colleagues treated the transitioning cell's cytoplasm, the fluid surrounding the nucleus, with a coloured dye and found that when they stretched the nucleus, it absorbed the dye, suggesting that it had expanded to become porous. It is possible that it does so to absorb molecules from the cytoplasm or environment which would help the cell differentiate.

Auxetic materials are of great interest to material scientists and engineers and this new discovery may provide clues to different methods of manufacture. The vast majority of known auxetic materials are highly ordered, such as the auxetic honeycomb. However, some examples of disordered auxetic materials are known -- for example, if one pulls both ends of a scrunched up ball of paper, the circumference around the ball expands. The nucleus of the transitional stem cell is likewise disordered.

"There is clearly a lot we can learn from nature," adds Dr Chalut. "We are already seeing auxeticity explored for its super-absorption properties, but despite great technological effort, auxetic materials are still rare and there is still much to discover about them in order to manufacture them better. To overcome this, materials scientists can do what has become de rigueur in their discipline: they can learn from nature. Studying how auxeticity has evolved in nature will guide research into new ways to produce auxetic materials, which might have many diverse applications in our everyday life."


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons Licence. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefano Pagliara, Kristian Franze, Crystal R. McClain, George W. Wylde, Cynthia L. Fisher, Robin J. M. Franklin, Alexandre J. Kabla, Ulrich F. Keyser, Kevin J. Chalut. Auxetic nuclei in embryonic stem cells exiting pluripotency. Nature Materials, 2014; DOI: 10.1038/nmat3943

Cite This Page:

University of Cambridge. "Bulletproof nuclei? Stem cells exhibit unusual absorption property." ScienceDaily. ScienceDaily, 20 April 2014. <www.sciencedaily.com/releases/2014/04/140420131808.htm>.
University of Cambridge. (2014, April 20). Bulletproof nuclei? Stem cells exhibit unusual absorption property. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/04/140420131808.htm
University of Cambridge. "Bulletproof nuclei? Stem cells exhibit unusual absorption property." ScienceDaily. www.sciencedaily.com/releases/2014/04/140420131808.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins