Featured Research

from universities, journals, and other organizations

Vacuum ultraviolet lamp of the future created

Date:
April 22, 2014
Source:
American Institute of Physics (AIP)
Summary:
Scientists have developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This is within the range of vacuum-UV light -- so named because while light of that energy can propagate in a vacuum, it is quickly absorbed by oxygen in the air.

The VUV lamp, which has a potential to be powerful tool for the surface treatment and optical cleaning, was demonstrated.
Credit: S. ONO/Nagoya Institute of Technology (NITech)

A team of researchers in Japan has developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This is within the range of vacuum-UV light -- so named because while light of that energy can propagate in a vacuum, it is quickly absorbed by oxygen in the air.

This fact makes vacuum UV light extremely useful for industrial applications from sterilizing medical devices to cleaning semiconductor substrates because when it strikes oxygen-containing molecules on a surface, it generates highly reactive oxygen radicals, which can completely destroy any microbes contaminating that surface.

Existing commercial vacuum UV lamps are bulky and expensive, however. They also use a lot of power, run hot, have short lifetimes and contain toxic gasses that can pollute the environment and harm people. The new lamp avoids those issues because it was fabricated with a solid-state phosphor made from a thin film of KMgF3, which is easy to make, avoids the use of toxic gasses and does not require expensive rare earth elements.

In AIP Publishing's journal APL-Materials, the Japanese team describes how this solid-state phosphor promises to make future, low-power vacuum UV lamps that will be more flexible in design as well as being smaller, longer lasting and relatively heat-free -- all traits that are typical advantages of solid state lighting in general.

"Our lamp is a promising light source in terms of lifetime, size, heat conduction and stability," said Shingo Ono of the Nagoya Institute of Technology in Japan, who led the research. "[It] has the potential to be an excellent alternate light source to low-pressure mercury lamps, excimer lamps and deuterium lamps."

In addition to Ono and his colleagues at Nagoya Institute of Technology, the team was composed of researchers from Universiti Teknologi Malaysia; the Tokuyama Corporation in Tokyo; Tohoku University in Sendai, Japan; and the Kyushu Institute of Technology in Kitakyushu, Japan.

One of the hurdles they faced was to safely fabricate the phosphor using a compound containing fluoride, which is itself a toxic, corrosive and potentially dangerous chemical to handle. One way would have been to use an inflow of gaseous fluoride to coat the surface of the KMgF3 thin film, but instead the team discovered a safer route to fabricating it with pulsed laser deposition -- a way of layering thin films of chemicals onto surfaces through irradiation with a focused laser beam.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Masahiro Yanagihara, Zamri Yusop, Masaki Tanemura, Shingo Ono, Tomohito Nagami, Kentaro Fukuda, Toshihisa Suyama, Yuui Yokota, Takayuki Yanagida and Akira Yoshikawa. Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor. APL-Materials, April 22, 2014 DOI: 10.1063/1.4871915

Cite This Page:

American Institute of Physics (AIP). "Vacuum ultraviolet lamp of the future created." ScienceDaily. ScienceDaily, 22 April 2014. <www.sciencedaily.com/releases/2014/04/140422113237.htm>.
American Institute of Physics (AIP). (2014, April 22). Vacuum ultraviolet lamp of the future created. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/04/140422113237.htm
American Institute of Physics (AIP). "Vacuum ultraviolet lamp of the future created." ScienceDaily. www.sciencedaily.com/releases/2014/04/140422113237.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins