Featured Research

from universities, journals, and other organizations

Bioinformatics profiling identifies a new mammalian clock gene

Date:
April 22, 2014
Source:
University of Pennsylvania School of Medicine
Summary:
Over 15 mammalian clock proteins have been identified, but researchers surmise there are more. Could big data approaches help find them? To accelerate clock-gene discovery, investigators used a computer-assisted approach to identify and rank candidate clock components, which they liken to online Netflix-like profiling of movie suggestions for customers. This approach found a new core clock gene, which the team named CHRONO.

Mice are nocturnal. When both wild type and Chrono knockout mice are kept in an environment with 12 hours of light (blue) and 12 hours of dark (white). They align their activity (green) to the lighting schedule and run in the dark. When the animals are switched to constant darkness (arrow), the influence of their internal circadian clock is revealed. Both wild type and Chrono knockout mice maintain regular patterns of activity and rest that are slightly shorter than 24 hours -- each successive day the onset of activity occurs somewhat earlier. However, the endogenous activity period of Chrono knockout mice is about 25 minutes longer than the period of wild type mice.
Credit: Ron Anafi, M.D., Ph.D.; John Hogenesch, Ph.D., Perelman School of Medicine, University of Pennsylvania

Over the last few decades researchers have characterized a set of clock genes that drive daily rhythms of physiology and behavior in all types of species, from flies to humans. Over 15 mammalian clock proteins have been identified, but researchers surmise there are more. A team from the Perelman School of Medicine at the University of Pennsylvania wondered if big-data approaches could find them.

Related Articles


To accelerate clock-gene discovery, the investigators, led by John Hogenesch, PhD, professor of Pharmacology and first author Ron Anafi, MD, PhD, an instructor in the department of Medicine, used a computer-assisted approach to identify and rank candidate clock components. This approach found a new core clock gene, which the team named CHRONO. Their findings appear this week in PLOS Biology.

Hogenesch likens their approach to online profiling of movie suggestions for customers: "Think of Netflix. Based on your personalized movie profile, it predicts what movies you may want to watch in the future based on what you watched in the past." He thought the team could use this approach to identify new clock genes, given criteria already established from the "behavior" of known clock genes identified in the past two decades:

  • Clock genes cause oscillations at the messenger RNA and protein level.
  • Clock proteins physically interact with other clock proteins to form complexes that control daily rhythm inside cells.
  • Disruption of clock genes in cell models cause changes in observable behavioral and metabolic traits on a 24-hour cycle.
  • Clock genes are conserved across 600 million years of evolution from fruitflies to humans.

"We used a simple form of machine learning to integrate biologically relevant, genome-scale data and ranked genes based on their similarity to known clock proteins," explains Hogenesch. Using biological big data such as that found in the Circadian Expression Profile Data Base (CircaDB) to search for new clock genes, the Penn team evaluated the features of 20,000 human genes to isolate other genes that have the same clock-gene characteristics. "The hypothesis is that other genes that functionally resemble known clock genes are more likely to be clock genes themselves, just like movies that resemble your old favorites are more likely to become new favorites," says Anafi.

They found that several of the genes they identified physically interact with known clock proteins and modulate the daily rhythm of cells. One candidate, dubbed Gene Model 129, interacted with BMAL1, a well-known core clock component, and repressed the key driver of molecular rhythms, the BMAL1/CLOCK protein complex that guides the daily transcription of other proteins in a complicated system of genes that switch on and off over the course of the 24-hour day.

Given these results, the team renamed Gene Model 129, CHRONO, for computationally highlighted repressor of the network oscillator. The litmus test for identifying clock genes, however, is whether they regulate behavior: In mice in which CHRONO had been knocked out, Hogenesch found that the mice had a prolonged circadian period.

A companion study by colleagues at RIKEN in Japan and the University of Michigan, using a genome-wide analysis instead of a machine-learning approach, produced similar findings. Both studies link CHRONO to BMAL1. In the future, Anafi and Hogenesch will be investigating whether CHRONO regulates sleep, as most clock genes influence this behavior.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ron C. Anafi, Yool Lee, Trey K. Sato, Anand Venkataraman, Chidambaram Ramanathan, Ibrahim H. Kavakli, Michael E. Hughes, Julie E. Baggs, Jacqueline Growe, Andrew C. Liu, Junhyong Kim, John B. Hogenesch. Machine Learning Helps Identify CHRONO as a Circadian Clock Component. PLoS Biology, 2014; 12 (4): e1001840 DOI: 10.1371/journal.pbio.1001840

Cite This Page:

University of Pennsylvania School of Medicine. "Bioinformatics profiling identifies a new mammalian clock gene." ScienceDaily. ScienceDaily, 22 April 2014. <www.sciencedaily.com/releases/2014/04/140422142038.htm>.
University of Pennsylvania School of Medicine. (2014, April 22). Bioinformatics profiling identifies a new mammalian clock gene. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/04/140422142038.htm
University of Pennsylvania School of Medicine. "Bioinformatics profiling identifies a new mammalian clock gene." ScienceDaily. www.sciencedaily.com/releases/2014/04/140422142038.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins