Featured Research

from universities, journals, and other organizations

Predicting drift of floating pumice 'islands' can benefit shipping

Date:
April 23, 2014
Source:
University of Southampton
Summary:
A new technique will aid in predicting the dispersal and drift patterns of large floating ‘islands’ of pumice created by volcanic eruptions at sea. Known as pumice rafts, these large mobile accumulations of pumice fragments can spread to affect a considerable area of the ocean, damaging vessels and disrupting shipping routes for months or even years. The ability to predict where these rafts will end up could give enough advance warning for protective measures to be put in place on shipping routes or in harbours where the presence of pumice is hazardous.

Havre Seamount pumice raft drift graph.
Credit: University of Southampton

A technique presented in Nature Communications by researchers from the National Oceanography Centre Southampton (NOCS) and the University of Southampton will aid in predicting the dispersal and drift patterns of large floating 'islands' of pumice created by volcanic eruptions at sea.

Related Articles


Known as pumice rafts, these large mobile accumulations of pumice fragments can spread to affect a considerable area of the ocean, damaging vessels and disrupting shipping routes for months or even years. The ability to predict where these rafts will end up could give enough advance warning for protective measures to be put in place on shipping routes or in harbours where the presence of pumice is hazardous.

Martin Jutzeler, Post-Doctoral Research Fellow at NOCS, and a team of colleagues simulated the drift of a massive 400km2 raft of pumice from Havre, a deep submarine volcano in the southwest Pacific, using a high-resolution model of the global ocean circulation. The team, which included researchers from the University of Tasmania in Australia, the University of Otago in New Zealand and Stanford University in the United States, then tested the results against satellite imagery plus direct observations from sailing crews, to show that they can accurately reproduce surface drift using this method and note that this large-scale natural experiment validates the physics of the model.

This technique, they believe, can be used to forecast dispersal routes of potentially hazardous pumice rafts from future eruptions, mitigating potential risks to ships and allowing authorities to protect harbours. The same high-fidelity particle tracking can also be used to predict the spread of other floating objects in surface ocean waters, such as anthropogenic waste or passively-drifting organisms.

"Pumice in rafts can drift for years, become waterlogged and sink, or become stranded on shorelines. For a variety of reasons, it's important that we develop a better understanding of their formation, movement and dispersal over time," said Dr Bob Marsh, Reader in Physical Oceanography at the University of Southampton who was part of the research team. "The pumice raft used in our research was formed by the impressive, deep submarine eruption of the Havre caldera volcano in the southwest Pacific in July 2012 was perfect for our research. The eruption was far from coastal interferences so produced a single raft spanning over 400 square kilometres in one day, thus initiating a gigantic, high-precision, natural experiment in surface dispersion, in a region dominated by eddies -- the oceanic equivalent of weather systems."

"Our research shows how observed raft dispersal can be accurately reproduced by simulating drift and dispersal patterns using currents from an eddy-resolving ocean model hindcast," Dr Marsh continued. "For future eruptions that produce potentially hazardous pumice rafts, our technique allows real-time forecasts of dispersal routes, in addition to inference of ash/pumice deposit distribution in the deep ocean."


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Jutzeler, Robert Marsh, Rebecca J. Carey, James D. L. White, Peter J. Talling, Leif Karlstrom. On the fate of pumice rafts formed during the 2012 Havre submarine eruption. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4660

Cite This Page:

University of Southampton. "Predicting drift of floating pumice 'islands' can benefit shipping." ScienceDaily. ScienceDaily, 23 April 2014. <www.sciencedaily.com/releases/2014/04/140423132503.htm>.
University of Southampton. (2014, April 23). Predicting drift of floating pumice 'islands' can benefit shipping. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2014/04/140423132503.htm
University of Southampton. "Predicting drift of floating pumice 'islands' can benefit shipping." ScienceDaily. www.sciencedaily.com/releases/2014/04/140423132503.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) — Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
Madagascar Locust Plague Could Mean Famine For Millions

Madagascar Locust Plague Could Mean Famine For Millions

Newsy (Jan. 27, 2015) — The Food and Agriculture Organization says millions could face famine in Madagascar without more funding to finish locust eradication efforts. Video provided by Newsy
Powered by NewsLook.com
Storm Slams New England, Spares Mid-Atlantic

Storm Slams New England, Spares Mid-Atlantic

AP (Jan. 27, 2015) — A howling blizzard with wind gusts over 70 mph heaped snow on Boston along with other stretches of lower New England and Long Island on Tuesday, but failed to live up to the hype in Philadelphia and New York City. (Jan. 27) Video provided by AP
Powered by NewsLook.com
Mexico's Volcano of Fire Erupts Again

Mexico's Volcano of Fire Erupts Again

Reuters - News Video Online (Jan. 26, 2015) — A huge plume of smoke shoots into the air as activity in Mexico&apos;s Volcano of Fire picks up again. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins