Featured Research

from universities, journals, and other organizations

When things get glassy, molecules go fractal

Date:
April 24, 2014
Source:
Duke University
Summary:
School children learn the difference between liquids and gases, but centuries of scholarship have failed to produce consensus about how to categorize glass. Now, combining theory and numerical simulations, researchers have resolved an enduring question in the theory of glasses, showing that their energy landscapes are far rougher than previously believed. The new model shows that molecules in glassy materials settle into a fractal hierarchy of states.

The research confirmed that glasses form when their molecules get jammed into fractal 'wells,' as shown on the right, rather than smooth or slightly rough wells (left).
Credit: Patrick Charbonneau

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common -- they all belong to a state of matter known as glasses. School children learn the difference between liquids and gases, but centuries of scholarship have failed to produce consensus about how to categorize glass.

Now, combining theory and numerical simulations, researchers have resolved an enduring question in the theory of glasses by showing that their energy landscapes are far rougher than previously believed. The findings appear April 24 in the journal Nature Communications.

"There have been beautiful mathematical models, but with sometimes tenuous connection to real, structural glasses. Now we have a model that's much closer to real glasses," said Patrick Charbonneau, one of the co-authors and assistant professor of chemistry and physics at Duke University.

The new model, which shows that molecules in glassy materials settle into a fractal hierarchy of states, unites mathematics, theory and several formerly disparate properties of glasses.

One thing that sets glasses apart from other phase transitions is a lack of order among their constituent molecules. Their cooled particles become increasingly sluggish until, caged in by their neighbors, the molecules cease to move -- but in no predictable arrangement. One way for researchers to visualize this is with an energy landscape, a map of all the possible configurations of the molecules in a system.

Charbonneau said a simple energy landscape of glasses can be imagined as a series of ponds or wells. When the water is high (the temperature is warmer), the particles within float around as they please, crossing from pond to pond without problem. But as you begin to lower the water level (by lowering the temperature or increasing the density), the particles become trapped in one of the small ponds. Eventually, as the pond empties, the molecules become jammed into disordered and rigid configurations.

"Jamming is what happens when you take sand and squeeze it," Charbonneau said. "First it's easy to squeeze, and then after a while it gets very hard, and eventually it becomes impossible."

Like the patterns of a lakebed revealed by drought, researchers have long wondered exactly what "shape" lies at the bottom of glass energy landscapes, where molecules jam. Previous theories have predicted the bottom of the basins might be smooth or a bit rough.

"At the bottom of these lakes or wells, what you find is variation in which particles have a force contact or bond," Charbonneau said. "So even though you start from a single configuration, as you go to the bottom or compress them, you get different realizations of which pairs of particles are actually in contact."

Charbonneau and his co-authors based in Paris and Rome showed, using computer simulations and numeric computations, that the glass molecules jam based on a fractal regime of wells within wells.

The new description makes sense of several behaviors seen in glasses, like the property known as avalanching, which describes a random rearrangement of molecules that leads to crystallization.

"There are a lot of properties of glasses that are not understood, and this finding has the potential to bring together a wide range of those problems into one coherent picture," said Charbonneau.

Understanding the structure of glasses is more than an intellectual exercise -- materials scientists stand to advance from the knowledge, which could lead to better control of the aging of glasses.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Erin Weeks. Note: Materials may be edited for content and length.


Journal Reference:

  1. Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, Pierfrancesco Urbani, Francesco Zamponi. Fractal free energy landscapes in structural glasses. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4725

Cite This Page:

Duke University. "When things get glassy, molecules go fractal." ScienceDaily. ScienceDaily, 24 April 2014. <www.sciencedaily.com/releases/2014/04/140424102422.htm>.
Duke University. (2014, April 24). When things get glassy, molecules go fractal. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2014/04/140424102422.htm
Duke University. "When things get glassy, molecules go fractal." ScienceDaily. www.sciencedaily.com/releases/2014/04/140424102422.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins