Featured Research

from universities, journals, and other organizations

Graphene very mobile in lakes: Risks of negative environmental impacts if released

Date:
April 29, 2014
Source:
University of California - Riverside
Summary:
In a first-of-its-kind study of how a material some think could transform the electronics industry moves in water, researchers found that graphene oxide nanoparticles are very mobile in lakes or streams and therefore may well cause negative environmental impacts if released.

Jacob D. Lanphere, a Ph.D. student at UC Riverside, holds a sample of graphene oxide.
Credit: Image courtesy of University of California - Riverside

In a first-of-its-kind study of how a material some think could transform the electronics industry moves in water, researchers at the University of California, Riverside Bourns College of Engineering found graphene oxide nanoparticles are very mobile in lakes or streams and therefore may well cause negative environmental impacts if released.

Related Articles


Graphene oxide nanoparticles are an oxidized form of graphene, a single layer of carbon atoms prized for its strength, conductivity and flexibility. Applications for graphene include everything from cell phones and tablet computers to biomedical devices and solar panels.

The use of graphene and other carbon-based nanomaterials, such as carbon nanotubes, are growing rapidly. At the same time, recent studies have suggested graphene oxide may be toxic to humans.

As production of these nanomaterials increase, it is important for regulators, such as the Environmental Protection Agency, to understand their potential environmental impacts, said Jacob D. Lanphere, a UC Riverside graduate student who co-authored a just-published paper about graphene oxide nanoparticles transport in ground and surface water environments.

"The situation today is similar to where we were with chemicals and pharmaceuticals 30 years ago," Lanphere said. "We just don't know much about what happens when these engineered nanomaterials get into the ground or water. So we have to be proactive so we have the data available to promote sustainable applications of this technology in the future."

The paper co-authored by Lanphere was published in a special issue of the journal Environmental Engineering Science.

Other authors were: Sharon L. Walker, an associate professor and the John Babbage Chair in Environmental Engineering at UC Riverside; Brandon Rogers and Corey Luth, both undergraduate students working in Walker's lab; and Carl H. Bolster, a research hydrologist with the U.S. Department of Agriculture in Bowling Green, Ky.

Walker's lab is one of only a few in the country studying the environmental impact of graphene oxide. The research that led to the Environmental Engineering Science paper focused on understanding graphene oxide nanoparticles' stability, or how well they hold together, and movement in groundwater versus surface water.

The researchers found significant differences.

In groundwater, which typically has a higher degree of hardness and a lower concentration of natural organic matter, the graphene oxide nanoparticles tended to become less stable and eventually settle out or be removed in subsurface environments.

In surface waters, where there is more organic material and less hardness, the nanoparticles remained stable and moved farther, especially in the subsurface layers of the water bodies.

The researchers also found that graphene oxide nanoparticles, despite being nearly flat, as opposed to spherical, like many other engineered nanoparticles, follow the same theories of stability and transport.

The research is supported by Lanphere's National Science Foundation Graduate Research Fellowship; a NSF grant received by the UC Center for Environmental Implications for Nanotechnology, of which Walker is a member; and an NSF Career Award and US Department of Agriculture Hispanic Serving Institution grant, both received by Walker.


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Sean Nealon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jacob D. Lanphere, Brandon Rogers, Corey Luth, Carl H. Bolster, Sharon L. Walker. Stability and Transport of Graphene Oxide Nanoparticles in Groundwater and Surface Water. Environmental Engineering Science, 2014; 140317110400001 DOI: 10.1089/ees.2013.0392

Cite This Page:

University of California - Riverside. "Graphene very mobile in lakes: Risks of negative environmental impacts if released." ScienceDaily. ScienceDaily, 29 April 2014. <www.sciencedaily.com/releases/2014/04/140429125823.htm>.
University of California - Riverside. (2014, April 29). Graphene very mobile in lakes: Risks of negative environmental impacts if released. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2014/04/140429125823.htm
University of California - Riverside. "Graphene very mobile in lakes: Risks of negative environmental impacts if released." ScienceDaily. www.sciencedaily.com/releases/2014/04/140429125823.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
HTC And Valve Team Up For Virtual Reality Headset

HTC And Valve Team Up For Virtual Reality Headset

Newsy (Mar. 1, 2015) HTC unveiled Vive, its new virtual reality headset, Sunday. The device is supported by gaming company Valve, which has made a push into the market. Video provided by Newsy
Powered by NewsLook.com
Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins