Featured Research

from universities, journals, and other organizations

New revolutionary sensor links pressure to color change

Date:
April 30, 2014
Source:
University of California - Riverside
Summary:
A high-resolution pressure sensor indicates pressure by varying its color -- a sensor that all of us can use with just our eyes. This sensor differs from commercially available pressure sensor films. The new technology produces a mosaic of easy-to-distinguish colors and has the benefit of higher contrast and resolution. It can potentially be used in many safety devices for revealing pressure distribution over even very complex surfaces.

Digital images (top) and schematic illustration (bottom) showing the color change of the sensor film after experiencing different amounts of pressure.
Credit: Yin Lab, UC Riverside.

Imagine an automobile crash test that uses test dummies painted all over with a substance that can change color according to the levels of stress that various parts of the dummies' bodies will endure. Such a "color map" could provide vital information to engineers designing safer automobiles.

Related Articles


Or imagine baseball gloves that when worn show the batters if they are using the appropriate amount of pressure to grip their bats, resulting in better performance.

New technology developed at the University of California, Riverside may now make the above and similar ideas a reality. Indeed, the technology could be applied to improve everyday devices, such as smartphones, that for operation rely on the right amount of pressure applied to them.

"We have developed a high-resolution pressure sensor that indicates pressure by varying its color -- a sensor that all of us can use with just our eyes," said Yadong Yin, an associate professor of chemistry, whose lab led the research.

The lab used a self-assembly method to string together gold nanoparticles which they then embedded into a polymer film. The film deformed when pressed, stretching the gold nanoparticle strings by increasing the separation between neighboring gold nanoparticles.

"This increased separation alters the way the nanoparticles interact with light," Yin explained. "When linked together, the gold nanoparticles originally appear blue. But they gradually change to red with increasing pressure as the nanoparticles start disassembling. This easily and visually helps us figure out how much pressure has been applied."

Study results appear this month in Nano Letters.

The sensor that Yin's lab developed differs from commercially available pressure sensor films. The latter indicate pressure by changing the intensity of just one color (for example, a pale red to a darker red). They tend to be difficult to interpret and have low resolution and contrast.

The new technology produces a mosaic of easy-to-distinguish colors and has the benefit of higher contrast and resolution. It can potentially be used in many safety devices for revealing pressure distribution over even very complex surfaces.

"The many electronic stress sensors commercially available are bulky and not suitable for certain applications," Yin said. "For example, it is difficult to tell the stress distribution over a particular area if the contact surfaces are not flat and uniform. Our sensor films can be painted on the contact surfaces so that the color variance in different areas clearly shows the stress distribution over the contact surface."

While his lab used gold in the experiments, silver and copper could also work, Yin added. The sensor the lab developed is a solid plastic film. Under stress, it deforms like conventional plastics. The new color that arises persists after the stress is removed.

"This is why we are calling it a 'colorimetric stress memory sensor,'" Yin said.

One of the research interests of his lab is the design of materials with new properties via the self-assembly process. The lab first makes nanoparticles and then organizes them together to produce new properties arising from particle-particle interactions.

"In the case of our sensor, we initially found a way to organize gold nanoparticles together to form strings," Yin said. "That process is accompanied by a sharp color-change from red to blue. We speculated that the reverse -- disassembly -- process might have the reverse color change: from blue to red. We found to our surprise that mechanical force could achieve this disassembly. Considerable effort has been made by researchers to study nanoparticle self-assembly. Indeed, gold nanoparticles have conventionally been used as sensors based on the self-assembly process. What is novel about our work is that it shows that the disassembly process can also find great applications if the assembly is designed to be reversible."

Yin was joined in the research by Xiaogang Han, a former postdoctoral researcher in his lab; and Yiding Liu, a graduate student who recently won the graduate student silver award at the Materials Research Society in San Francisco, Calif.

The research was funded by a grant to Yin from the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaogang Han, Yiding Liu, Yadong Yin. Colorimetric Stress Memory Sensor Based on Disassembly of Gold Nanoparticle Chains. Nano Letters, 2014; 140408153751001 DOI: 10.1021/nl500144k

Cite This Page:

University of California - Riverside. "New revolutionary sensor links pressure to color change." ScienceDaily. ScienceDaily, 30 April 2014. <www.sciencedaily.com/releases/2014/04/140430192753.htm>.
University of California - Riverside. (2014, April 30). New revolutionary sensor links pressure to color change. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/04/140430192753.htm
University of California - Riverside. "New revolutionary sensor links pressure to color change." ScienceDaily. www.sciencedaily.com/releases/2014/04/140430192753.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Flexible Pressure-Sensor Film Shows How Much Force a Surface 'feels' -- In Color

Apr. 30, 2014 A newly developed pressure sensor could help car manufacturers design safer automobiles and even help Little League players hold their bats with a better grip, scientists report. Their ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins