Featured Research

from universities, journals, and other organizations

New revolutionary sensor links pressure to color change

Date:
April 30, 2014
Source:
University of California - Riverside
Summary:
A high-resolution pressure sensor indicates pressure by varying its color -- a sensor that all of us can use with just our eyes. This sensor differs from commercially available pressure sensor films. The new technology produces a mosaic of easy-to-distinguish colors and has the benefit of higher contrast and resolution. It can potentially be used in many safety devices for revealing pressure distribution over even very complex surfaces.

Digital images (top) and schematic illustration (bottom) showing the color change of the sensor film after experiencing different amounts of pressure.
Credit: Yin Lab, UC Riverside.

Imagine an automobile crash test that uses test dummies painted all over with a substance that can change color according to the levels of stress that various parts of the dummies' bodies will endure. Such a "color map" could provide vital information to engineers designing safer automobiles.

Or imagine baseball gloves that when worn show the batters if they are using the appropriate amount of pressure to grip their bats, resulting in better performance.

New technology developed at the University of California, Riverside may now make the above and similar ideas a reality. Indeed, the technology could be applied to improve everyday devices, such as smartphones, that for operation rely on the right amount of pressure applied to them.

"We have developed a high-resolution pressure sensor that indicates pressure by varying its color -- a sensor that all of us can use with just our eyes," said Yadong Yin, an associate professor of chemistry, whose lab led the research.

The lab used a self-assembly method to string together gold nanoparticles which they then embedded into a polymer film. The film deformed when pressed, stretching the gold nanoparticle strings by increasing the separation between neighboring gold nanoparticles.

"This increased separation alters the way the nanoparticles interact with light," Yin explained. "When linked together, the gold nanoparticles originally appear blue. But they gradually change to red with increasing pressure as the nanoparticles start disassembling. This easily and visually helps us figure out how much pressure has been applied."

Study results appear this month in Nano Letters.

The sensor that Yin's lab developed differs from commercially available pressure sensor films. The latter indicate pressure by changing the intensity of just one color (for example, a pale red to a darker red). They tend to be difficult to interpret and have low resolution and contrast.

The new technology produces a mosaic of easy-to-distinguish colors and has the benefit of higher contrast and resolution. It can potentially be used in many safety devices for revealing pressure distribution over even very complex surfaces.

"The many electronic stress sensors commercially available are bulky and not suitable for certain applications," Yin said. "For example, it is difficult to tell the stress distribution over a particular area if the contact surfaces are not flat and uniform. Our sensor films can be painted on the contact surfaces so that the color variance in different areas clearly shows the stress distribution over the contact surface."

While his lab used gold in the experiments, silver and copper could also work, Yin added. The sensor the lab developed is a solid plastic film. Under stress, it deforms like conventional plastics. The new color that arises persists after the stress is removed.

"This is why we are calling it a 'colorimetric stress memory sensor,'" Yin said.

One of the research interests of his lab is the design of materials with new properties via the self-assembly process. The lab first makes nanoparticles and then organizes them together to produce new properties arising from particle-particle interactions.

"In the case of our sensor, we initially found a way to organize gold nanoparticles together to form strings," Yin said. "That process is accompanied by a sharp color-change from red to blue. We speculated that the reverse -- disassembly -- process might have the reverse color change: from blue to red. We found to our surprise that mechanical force could achieve this disassembly. Considerable effort has been made by researchers to study nanoparticle self-assembly. Indeed, gold nanoparticles have conventionally been used as sensors based on the self-assembly process. What is novel about our work is that it shows that the disassembly process can also find great applications if the assembly is designed to be reversible."

Yin was joined in the research by Xiaogang Han, a former postdoctoral researcher in his lab; and Yiding Liu, a graduate student who recently won the graduate student silver award at the Materials Research Society in San Francisco, Calif.

The research was funded by a grant to Yin from the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaogang Han, Yiding Liu, Yadong Yin. Colorimetric Stress Memory Sensor Based on Disassembly of Gold Nanoparticle Chains. Nano Letters, 2014; 140408153751001 DOI: 10.1021/nl500144k

Cite This Page:

University of California - Riverside. "New revolutionary sensor links pressure to color change." ScienceDaily. ScienceDaily, 30 April 2014. <www.sciencedaily.com/releases/2014/04/140430192753.htm>.
University of California - Riverside. (2014, April 30). New revolutionary sensor links pressure to color change. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/04/140430192753.htm
University of California - Riverside. "New revolutionary sensor links pressure to color change." ScienceDaily. www.sciencedaily.com/releases/2014/04/140430192753.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Flexible Pressure-Sensor Film Shows How Much Force a Surface 'feels' -- In Color

Apr. 30, 2014 A newly developed pressure sensor could help car manufacturers design safer automobiles and even help Little League players hold their bats with a better grip, scientists report. Their ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins