Featured Research

from universities, journals, and other organizations

Taking the lead out of a promising solar cell: Environmentally friendly solar cell pushes forward the 'next big thing in photovoltaics'

Date:
May 4, 2014
Source:
Northwestern University
Summary:
Researchers have developed a solar cell with good efficiency that uses tin instead of lead perovskite as the harvester of light. The low-cost, environmentally friendly solar cell can be made easily using 'bench' chemistry -- no fancy equipment or hazardous materials. Perovskite solar cells are being touted as the 'next big thing in photovoltaics.' Lead perovskite has achieved 15 percent efficiency, and tin perovskite should be able to match -- and possibly surpass -- that.

Solar panels (stock image). Northwestern University researchers are the first to develop a new solar cell with good efficiency that uses tin instead of lead perovskite as the harvester of light. The low-cost, environmentally friendly solar cell can be made easily using "bench" chemistry -- no fancy equipment or hazardous materials.
Credit: Lev / Fotolia

Northwestern University researchers are the first to develop a new solar cell with good efficiency that uses tin instead of lead perovskite as the harvester of light. The low-cost, environmentally friendly solar cell can be made easily using "bench" chemistry -- no fancy equipment or hazardous materials.

Related Articles


"This is a breakthrough in taking the lead out of a very promising type of solar cell, called a perovskite," said Mercouri G. Kanatzidis, an inorganic chemist with expertise in dealing with tin. "Tin is a very viable material, and we have shown the material does work as an efficient solar cell."

Kanatzidis, who led the research, is the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences.

The new solar cell uses a structure called a perovskite but with tin instead of lead as the light-absorbing material. Lead perovskite has achieved 15 percent efficiency, and tin perovskite should be able to match -- and possibly surpass -- that. Perovskite solar cells are being touted as the "next big thing in photovoltaics" and have reenergized the field.

Kanatzidis developed, synthesized and analyzed the material. He then turned to Northwestern collaborator and nanoscientist Robert P. H. Chang to help him engineer a solar cell that worked well.

"Our tin-based perovskite layer acts as an efficient sunlight absorber that is sandwiched between two electric charge transport layers for conducting electricity to the outside world," said Chang, a professor of materials science and engineering at the McCormick School of Engineering and Applied Science.

Details of the lead-free solar cell will be published May 4 by the journal Nature Photonics. Kanatzidis and Chang are the two senior authors of the paper.

Their solid-state tin solar cell has an efficiency of just below 6 percent, which is a very good starting point, Kanatzidis said. Two things make the material special: it can absorb most of the visible light spectrum, and the perovskite salt can be dissolved, and it will reform upon solvent removal without heating.

"Other scientists will see what we have done and improve on our methods," Kanatzidis said. "There is no reason this new material can't reach an efficiency better than 15 percent, which is what the lead perovskite solar cell offers. Tin and lead are in the same group in the periodic table, so we expect similar results."

Perovskite solar cells have only been around -- and only in the lab -- since 2008. In 2012, Kanatzidis and Chang reported the new tin perovskite solar cell with promises of higher efficiency and lower fabrication costs while being environmentally safe.

"Solar energy is free and is the only energy that is sustainable forever," Kanatzidis said. "If we know how to harvest this energy in an efficient way we can raise our standard of living and help preserve the environment."

The solid-state tin solar cell is a sandwich of five layers, with each layer contributing something important. Being inorganic chemists, Kanatzidis and his postdoctoral fellows Feng Hao and Constantinos Stoumpos knew how to handle troublesome tin, specifically methylammonium tin iodide, which oxidizes when in contact with air.

The first layer is electrically conducting glass, which allows sunlight to enter the cell. Titanium dioxide is the next layer, deposited onto the glass. Together the two act as the electric front contact of the solar cell.

Next, the tin perovskite -- the light absorbing layer -- is deposited. This is done in a nitrogen glove box -- the bench chemistry is done in this protected environment to avoid oxidation.

On top of that is the hole transport layer, which is essential to close the electrical circuit and obtain a functional cell. This required Kanatzidis and his colleagues to find the right chemicals so as not to destroy the tin underneath. They determined what the best chemicals were -- a substituted pyridine molecule -- by understanding the reactivity of the perovskite structure. This layer also is deposited in the glove box. The solar cell is then sealed and can be taken out into the air.

A thin layer of gold caps off the solar-cell sandwich. This layer is the back contact electrode of the solar cell. The entire device, with all five layers, is about one to two microns thick.

The researchers then tested the device under simulated full sunlight and recorded a power conversion efficiency of 5.73 percent.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang, Mercouri G. Kanatzidis. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014; DOI: 10.1038/nphoton.2014.82

Cite This Page:

Northwestern University. "Taking the lead out of a promising solar cell: Environmentally friendly solar cell pushes forward the 'next big thing in photovoltaics'." ScienceDaily. ScienceDaily, 4 May 2014. <www.sciencedaily.com/releases/2014/05/140504133211.htm>.
Northwestern University. (2014, May 4). Taking the lead out of a promising solar cell: Environmentally friendly solar cell pushes forward the 'next big thing in photovoltaics'. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/05/140504133211.htm
Northwestern University. "Taking the lead out of a promising solar cell: Environmentally friendly solar cell pushes forward the 'next big thing in photovoltaics'." ScienceDaily. www.sciencedaily.com/releases/2014/05/140504133211.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
E.U. Leaders Agree To 40% CO2 Emissions Cut By 2030

E.U. Leaders Agree To 40% CO2 Emissions Cut By 2030

Newsy (Oct. 23, 2014) The latest E.U. emissions deal calls for a 40 percent greenhouse gas cut, which leaders say sets Europe up to lead in climate negotiations next year. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins