Featured Research

from universities, journals, and other organizations

New genomics technique could improve treatment, control of malaria

Date:
May 8, 2014
Source:
Wellcome Trust
Summary:
Single-cell genomics could provide new insight into the biology of Malaria parasites, including their virulence and levels of drug resistance, to ultimately improve treatment and control of the disease, according to new research. Malaria infections commonly contain complex mixtures of Plasmodium parasites which cause the disease. These mixtures, known as multiple genotype infections (MGI's), can alter the impact of the infection due to parasites competing with one another and can drive the spread of drug resistance. MGI's are extremely common in regions with high levels of malaria infection but their biology is poorly understood.

Single-cell genomics could provide new insight into the biology of Malaria parasites, including their virulence and levels of drug resistance, to ultimately improve treatment and control of the disease, according to new research funded by the Wellcome Trust and the National Institutes of Health.

Related Articles


The findings are revealed in a study by researchers at the Texas Biomedical Research Institute and published in the journal Genome Research.

Malaria infections commonly contain complex mixtures of Plasmodium parasites which cause the disease. These mixtures, known as multiple genotype infections (MGI's), can alter the impact of the infection due to parasites competing with one another and can drive the spread of drug resistance. MGI's are extremely common in regions with high levels of malaria infection but their biology is poorly understood.

"Up to 70 per cent of infections in sub-Saharan Africa are MGI's and we currently don't know how many genotypes are present and whether parasites come from a single mosquito bite or multiple mosquito bites" says Shalini Nair, first author on the paper.

Current genome sequencing techniques involve the chemical disintegration of samples of red blood cells from infected patients to obtain parasite DNA, which are then sequenced. This grouped sequencing cannot account for variations between individual parasites found in cells.

Single cell genomics allows the separation and isolation of cells to extract and sequence individual parasite DNA and determine any differences between the parasites within an infection.

"Current sequencing techniques really limit our understanding of malaria parasite biology" says Dr. Ian Cheeseman, who led the study. "It's like trying to understand human genetics by making DNA from everyone in a village at once. The data is all jumbled up, but what we really want is information from individuals."

The team used methods of single cell-sorting and whole genome amplification to separate out individual cells and amplify their DNA for sequencing directly from infected red blood cells. The use of single-cell genomics allows sequencing of individual parasites directly from a patient's blood.

The technique allows a comprehensive description of the composition of MGIs, and will reveal information on the strength of an infection and the development of drug-resistance, which can inform disease control interventions.

Though the technology is currently too expensive and demanding for routine use in the clinic, as the technology matures the applications for understanding malaria biology are vast.

Dr Michael Dunn, Head of Genetics and Molecular Sciences at the Wellcome Trust said: "Malaria remains one of the biggest killers in the world today despite decades of control efforts. Any insight into the fundamental genetics and overall biology of the disease is valuable to improve future interventions and reduce rates of infection and mortality."

Two forms of malaria parasites were sequenced in the study; Plasmodium falciparum (responsible for up to 700,000 deaths per year) and Plasmodium vivax (responsible for 20 million infections per year).


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Nair, S. C. Nkhoma, D. Serre, P. A. Zimmerman, K. Gorena, B. J. Daniel, F. Nosten, T. J. C. Anderson, I. H. Cheeseman. Single-cell genomics for dissection of complex malaria infections. Genome Research, 2014; DOI: 10.1101/gr.168286.113

Cite This Page:

Wellcome Trust. "New genomics technique could improve treatment, control of malaria." ScienceDaily. ScienceDaily, 8 May 2014. <www.sciencedaily.com/releases/2014/05/140508133155.htm>.
Wellcome Trust. (2014, May 8). New genomics technique could improve treatment, control of malaria. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2014/05/140508133155.htm
Wellcome Trust. "New genomics technique could improve treatment, control of malaria." ScienceDaily. www.sciencedaily.com/releases/2014/05/140508133155.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) — Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) — AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Adults Only Get The Flu Twice A Decade, Researchers Say

Adults Only Get The Flu Twice A Decade, Researchers Say

Newsy (Mar. 4, 2015) — Researchers found adults only get the flu about once every five years. Scientists analyzed how a person&apos;s immunity builds up over time as well. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins