Featured Research

from universities, journals, and other organizations

Fairy circles apparently not created by termites after all

Date:
May 20, 2014
Source:
Helmholtz Centre For Environmental Research - UFZ
Summary:
For several decades scientists have been trying to come up with an explanation for the formation of the enigmatic, vegetation-free circles frequently found in certain African grassland regions. Now researchers have tested different prevailing hypotheses as to their respective plausibility. For the first time they have carried out a detailed analysis of the spatial distribution of these fairy circles – and discovered a remarkably regular and spatially comprehensive homogenous distribution pattern. This may best be explained by way of reference to local resource-competition for water among plants and vegetation, the team now reports.

Close-up view of a fairy circle. Total absence of vegetation growth within the almost circular area of a typical fairy circle. The sizes of fairy circles may vary, ranging from two to more than twenty metres in diameter. The average diameter recorded here, in the Marienfluss Valley, was approx. six metres.
Credit: Stephan Getzin/UFZ

For several decades scientists have been trying to come up with an explanation for the formation of the enigmatic, vegetation-free circles frequently found in certain African grassland regions. Now researchers have tested different prevailing hypotheses as to their respective plausibility. For the first time they have carried out a detailed analysis of the spatial distribution of these fairy circles -- and discovered a remarkably regular and spatially comprehensive homogenous distribution pattern. This may best be explained by way of reference to local resource-competition for water among plants and vegetation, the team now reports in the scientific journal Ecography.

Related Articles


It looks like a landscape covered with freckles. Arid grassland regions in certain parts of southwest Africa are covered with barren circular patches. Some of these measure only a few metres, others reach up to twenty (20) metres in diameter; and most of them display pronounced and lush peripheral growth of grass. These so-called fairy circles virtually do extend an open invitation for speculation: What has led to the formation of these enigmatic structures?

"Although scientists have been trying to answer this question for decades their mystery remains as yet unresolved," states Dr. Stephan Getzin from the Helmholtz Centre for Environmental Research (UFZ) in Leipzig -- because up to now no one has been able to actually observe, in situ, the genesis of a fairy circle.

There are however several theories, the most popular of which hypothesises that these mysterious patches are the work of termites. The insects allegedly nibble away at the grassroots, thus causing the dieback of vegetation. Other researchers consider hydrocarbons emanating from the depths of the earth being responsible for this phenomenon. Like in a chimney, these gases are presumed to be rising to the surface resulting in the localised loss and disappearance of vegetation.

A third fraction of scientists believes self-regulating grass growth in itself being the cause, under certain circumstances, for this type of spatial patterning since it is remarkable that the occurrence of fairy circles appears to be restricted to particularly arid zones right at the transition from grassland to desert regions. This is where intense localised resource-competition for water exists among existing vegetation. If competition becomes too strong and available soil moisture resources too scarce this could lead to the emergence of bare patches with a lush peripheral grass ring formation.

Together with colleagues from Gφttingen (Germany), Italy and Israel, Stephan Getzin has investigated which of these three hypotheses is most likely to be right. "We have adopted an entirely novel approach in this research," reports this member of the UFZ institute, who by now has been studying fairy circles for more than 15 years. This study is based on the review and evaluation of aerial images, covering representative regions with fairy circle occurrences throughout northwest Namibia. With the aid of these images scientists have analysed for the first time the exact spatial location and distribution of these barren patches within the surrounding landscape: Are they arranged and positioned merely by chance -- just like coins dropped accidentally and now scattered all over the place? Are there signs or distinguishable patterns of clustering in certain locations? Or do these patches perhaps need to maintain a minimum distance to their respective neighbours?

This can hardly be seen and detected with the naked eye. But statistical methodology is available to illustrate the respective distribution patterns, at different levels of scale. According to this methodology fairy circles are distributed surprisingly regular and homogenous, even across large spatial areas. "The occurrence of such patterning in nature is rather unusual" says Stephan Getzin. "There must be particularly strong regulating forces at work."

However, in his view this rather discredits the generally popular termite theory. In a study published in the scientific journal Science (2013) the sand termite species Psammotermes allocerus was indeed presented as most likely suspect for the creation of the enigmatic barren patches -- albeit primarily based on the argument, that the occurrence of this particular species of termites has been common to all fairy circles investigated at the time. No one has so far observed these creatures actually grazing holes into the Namibian grasslands -- let alone in such consistent patterns. Stephan Getzin points out: "There is, up to now, not one single piece of evidence demonstrating that social insects are capable of creating homogenously distributed structures, on such a large scale." On the contrary: The entire range of studies covering the distribution of ant and termite populations in arid territories predominantly rather attests to the occurrence of irregular, clustered distribution patterns at large scales. And, according to the research team, underground emission of abiotic gases, as well, is unlikely to result in such evenly dispersed and homogeneous spatial distribution.

What remains as probable cause is local resource-competition among plants and vegetation -- which incidentally seems quite capable of creating homogeneously scattered circles. Whereas, for example, in a young-growth forest plants will grow and develop at comparatively close range, vegetation will thin out and regress, over the years, in a self-organising process. Each mature tree, after all, needs sufficient space and nutrition for its development and will therefore be able to survive only at an appropriate distance to its neighbour. A similar process of resource-competition may consequently also be the real cause for a self-organising formation of the mysterious fairy circle patterns.

Using a computer model Stephan Getzin and his colleagues from Israel, who are specialised in this type of processing techniques, have simulated belowground competition for water and the resulting spatial vegetation distribution patterns -- and very similar patterns indeed emerged on the screen, akin to the images recorded in Namibia. And in the course of all statistical review and analysis performed, the characteristics of simulated and real fairy circles turned out to be remarkably congruent and close to identical. For the UFZ researchers this represents compelling evidence, that the enigmatic patches may in fact be the result of spatially self-organising grass growth. "We consider this at present being the most convincing explanation."


Story Source:

The above story is based on materials provided by Helmholtz Centre For Environmental Research - UFZ. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephan Getzin, Kerstin Wiegand, Thorsten Wiegand, Hezi Yizhaq, Jost von Hardenberg, Ehud Meron. Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia. Ecography, 2014; DOI: 10.1111/ecog.00911

Cite This Page:

Helmholtz Centre For Environmental Research - UFZ. "Fairy circles apparently not created by termites after all." ScienceDaily. ScienceDaily, 20 May 2014. <www.sciencedaily.com/releases/2014/05/140520093502.htm>.
Helmholtz Centre For Environmental Research - UFZ. (2014, May 20). Fairy circles apparently not created by termites after all. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/05/140520093502.htm
Helmholtz Centre For Environmental Research - UFZ. "Fairy circles apparently not created by termites after all." ScienceDaily. www.sciencedaily.com/releases/2014/05/140520093502.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) — Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) — Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) — A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins