Featured Research

from universities, journals, and other organizations

Dryland ecosystems emerge as driver in global carbon cycle

Date:
May 21, 2014
Source:
Montana State University
Summary:
Dryland ecosystems, which include deserts to dry-shrublands, play a more important role in the global carbon cycle than previously thought. In fact, they have emerged as one of its drivers. Surprised by the discovery, researchers urged global ecologists to include the emerging role of dryland ecosystems in their research.

his photo shows the greening of semi-arid vegetation in the Northern Territory of Australia, where increased productivity played a key role in the record 2011 global land carbon sink following prolonged La Nina rainfall and long-term changes in vegetation.
Credit: Photo courtesy of Ben Poulter

Dryland ecosystems, which include deserts to dry-shrublands, play a more important role in the global carbon cycle than previously thought. In fact, they have emerged as one of its drivers, says Montana State University faculty member Ben Poulter.

Related Articles


Surprised by the discovery, Poulter and his collaborators explained their findings in Nature. At the same time, they urged global ecologists to include the emerging role of dryland ecosystems in their research. Nature is a weekly international journal that publishes peer-reviewed research in all fields of science and technology.

"Our study found that natural events in Australia were largely responsible for this anomaly," Poulter said. "La Nina-driven rainfall during 2010 and 2011, as well as the 30-year greening up of its deserts and other drylands contributed to significant changes across the globe."

Poulter, who has a dual appointment in MSU's Department of Ecology and the Institute on Ecosystems, came to MSU in January. Before that, he worked in France at the Laboratoire des Sciences du Climat et de l'Envionnement (LSCE) where he contributed to compiling information for the Global Carbon Project's annual global carbon budget assessment.

He realized during that process that the world's land carbon sink in 2011 seemed to be absorbing an unusually large amount of carbon, Poulter said. Carbon dioxide moves constantly between land, oceans, vegetation and the atmosphere. When one of those absorbs more carbon dioxide than it releases, it's referred to as a carbon sink.

Poulter and his collaborators investigated the phenomena with a variety of data sets and modeling approaches. They eventually discovered surprising interactions between climate extremes and desert greening that increased in importance over the past 30 years. Further study showed that the dryland systems in the Southern Hemisphere, specifically Australia, had particularly high productivity in response to increased La Nina-phase rainfall.

"What surprised us was that no analogous biosphere response to similar climatic extremes existed in the past 30 years, prompting us to explore whether documented dryland-greening trends were responsible for changes in the carbon cycle dynamics," said Philippe Ciais, co-author and senior scientist at LSCE.

The authors discovered that an increase in the precipitation sensitivity of a range of ecosystems processes occurred between the periods of 1982-1996 and 1997-2011. One of those processes was the greening of desert vegetation. Together those processes led to a four-fold increase in net carbon uptake to precipitation over the past 30 years.

"Novel responses of the biosphere have been predicted to occur following human activities that have caused unprecedented changes in atmospheric carbon dioxide concentrations, climate and land cover," Poulter continued. "Our study provides new evidence that interactions among these human activities are now also impacting dryland biomes. These findings have global implications that should be considered in monitoring networks and earth system models."

The large 2011 land carbon uptake is not expected to lead to long-term increases in ecosystem carbon accumulation, according to the researchers.

"Dryland systems have high rates of carbon turnover compared to other biomes," Ciais said. "We can expect the carbon to be quickly respired or consumed in wildfires, already partly reflected by the high atmospheric carbon dioxide growth rate in 2012."

In Poulter's new role at MSU, he said he will work with colleagues investigating the role of fire and invasive species in dryland systems to further understand the mechanisms for dryland greening and carbon cycle consequences.


Story Source:

The above story is based on materials provided by Montana State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Benjamin Poulter, David Frank, Philippe Ciais, Ranga B. Myneni, Niels Andela, Jian Bi, Gregoire Broquet, Josep G. Canadell, Frederic Chevallier, Yi Y. Liu, Steven W. Running, Stephen Sitch, Guido R. van der Werf. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 2014; DOI: 10.1038/nature13376

Cite This Page:

Montana State University. "Dryland ecosystems emerge as driver in global carbon cycle." ScienceDaily. ScienceDaily, 21 May 2014. <www.sciencedaily.com/releases/2014/05/140521180057.htm>.
Montana State University. (2014, May 21). Dryland ecosystems emerge as driver in global carbon cycle. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2014/05/140521180057.htm
Montana State University. "Dryland ecosystems emerge as driver in global carbon cycle." ScienceDaily. www.sciencedaily.com/releases/2014/05/140521180057.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Rare Clouds Fill Grand Canyon

Raw: Rare Clouds Fill Grand Canyon

AP (Jan. 29, 2015) For the second time in two months, a rare weather phenomenon filled the Grand Canyon with thick clouds just below the rim on Wednesday. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com
"Cloud Inversion" In Grand Canyon

"Cloud Inversion" In Grand Canyon

Reuters - US Online Video (Jan. 29, 2015) Time lapse video captures a blanket of clouds amassing in the Grand Canyon -- the result of a rare meteorological process called "cloud inversion." Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Why Researchers Say We Should Cut Back On Biofuels

Why Researchers Say We Should Cut Back On Biofuels

Newsy (Jan. 29, 2015) Biofuels aren&apos;t the best alternative to fossil fuels, according to a new report. In fact, they&apos;re quite a bad one. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins