Featured Research

from universities, journals, and other organizations

Vaccine candidate using genetically engineered malaria parasite developed

Date:
May 29, 2014
Source:
Seattle Biomedical Research Institute (Seattle BioMed)
Summary:
A next generation genetically attenuated parasite (GAP) that might constitute the path to a highly protective malaria vaccine has been developed by scientists. Malaria is caused by Plasmodium parasites that are transmitted to humans by a mosquito bite, leading to 219 million documented cases and 627,000 deaths worldwide in 2012. While control measures, such as bed nets, are increasingly implemented, there remains no effective vaccine capable of eradicating malaria.

Seattle BioMed researchers today announced they have developed a next generation genetically attenuated parasite (GAP) that might constitute the path to a highly protective malaria vaccine. The study was published online in the journal Molecular Therapy.

Malaria is caused by Plasmodium parasites that are transmitted to humans by a mosquito bite, leading to 219 million documented cases and 627,000 deaths worldwide in 2012. While control measures, such as bed nets, are increasingly implemented, there remains no effective vaccine capable of eradicating malaria.

The manuscript describes the development of genetically engineered malaria parasites that are weakened by the precise removal of genes and designed to effectively prevent the parasite from inducing an infection in humans. These genetically attenuated parasites, or "GAPs," are incapable of multiplying, but are alive and able to effectively stimulate the immune system to build up defenses to prevent pathogenic infection. While this vaccine strategy has proven very successful in providing protection against viruses and bacteria, it remains a novel approach in combating parasites.

"While vaccination with live-attenuated parasites is capable of providing complete protection from malaria infection, it is imperative that we permanently cripple the very complex malaria parasite so that it cannot cause disease, and instead, effectively primes the immune system," said Stefan Kappe, Ph.D., corresponding author and professor, Seattle BioMed.

"This most recent publication builds on our previous work," said Sebastian Mikolajczak, PhD., Seattle BioMed senior scientist and GAP project leader. "The first generation GAP strain had two genes removed from the malaria parasite, but this new 'triple punch', developed in collaboration with scientists at the Walter and Eliza Hall Institute in Australia, removes three separate genes associated with the pathogenicity of the parasite, effectively abrogating its ability to establish an infection in humans."

"The next step is to test the safety and efficacy of this attenuated parasite in clinical trials in a highly efficient manner," said Alan Aderem, Ph.D., president, Seattle BioMed. "Seattle BioMed's Malaria Clinical Trials Center is one of only four centers in the world approved to safely and effectively test new malaria treatments and vaccines in humans by the malaria human challenge model. We are committed better understanding and eventually eradicate this deadly pathogen."


Story Source:

The above story is based on materials provided by Seattle Biomedical Research Institute (Seattle BioMed). Note: Materials may be edited for content and length.


Journal Reference:

  1. Sebastian A. Mikolajczak, Viswanathan Lakshmanan, Matthew Fishbaugher, Nelly Camargo, Anke Harupa, Alexis Kaushansky, Alyse N. Douglass, Michael Baldwin, Julie Healer, Matthew O’Neill, Thuan Phuong, Alan Cowman, Stefan H.I. Kappe. A next generation genetically attenuated Plasmodium falciparum parasite created by triple gene deletion. Molecular Therapy, 2014; DOI: 10.1038/mt.2014.85

Cite This Page:

Seattle Biomedical Research Institute (Seattle BioMed). "Vaccine candidate using genetically engineered malaria parasite developed." ScienceDaily. ScienceDaily, 29 May 2014. <www.sciencedaily.com/releases/2014/05/140529092221.htm>.
Seattle Biomedical Research Institute (Seattle BioMed). (2014, May 29). Vaccine candidate using genetically engineered malaria parasite developed. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/05/140529092221.htm
Seattle Biomedical Research Institute (Seattle BioMed). "Vaccine candidate using genetically engineered malaria parasite developed." ScienceDaily. www.sciencedaily.com/releases/2014/05/140529092221.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins