Featured Research

from universities, journals, and other organizations

X-ray pulses on demand from electron storage rings

Date:
May 30, 2014
Source:
Helmholtz-Zentrum Berlin für Materialien und Energie
Summary:
Physicists recently devised a new method to pick single X-ray pulses out of the pulse trains usually emitted from synchrotron radiation facilities. The technique is very useful to support studies of electronic properties of quantum materials and superconductors and paves the way for future synchrotron facilities with variable pulse lengths.

Some contemporary Synchroton Radiation methods need light pulsed x-rays with a specific time structure. HZB-users at BESSY II can use them now on demand. Graphics: Highway at night.
Credit: Image: K. Holldack/HZB

Everything we know nowadays about novel materials and the underlying processes in them we also know thanks to studies at contemporary synchrotron facilities like BESSY II. Here, relativistic electrons in a storage ring are employed to generate very brilliant and partly coherent light pulses from the THz to the X-ray regime in undulators and other devices. However, most of the techniques used at synchrotrons are very "photon hungry" and demand brighter and brighter light pulses to conduct innovative experiments. The general greed for stronger light pulses does, however, not really meet the requirements of one of the most important techniques in material science: photoelectron spectroscopy. Physicists and chemists have been using it for decades to study molecules, gases and surfaces of solids. However, if too many photons hit a surface at the same time, space charge effects deteriorate the results. Owing to these limits, certain material parameters stay hidden in such cases. Thus, a tailored temporal pattern of x-ray pulses is mandatory to move things forward in surface physics at Synchrotrons.

Related Articles


Scientists from HZB's Institute for Methods and Instrumentation in Synchrotron Radiation Research and the Accelerator Department have now jointly solved the gordic knot as they published in the journal Nature Communications. Their novel method is capable of picking single pulses out of a conventional pulse train as usually emitted from Synchrotron facilities. They managed to apply this for the first time to time-of-flight electron spectroscopy based on modern instruments as developed within a joint Lab with Uppsala University, Sweden.

Picking single pulses out of a pulse train

The pulse picking technique is based on a quasi resonant magnetic excitation of transverse oscillations in one specific relativistic electron bunch that -- like all others -- generates a radiation cone within an undulator. The selective excitation leads to an enlargement of the radiation cone. Employing a detour ("bump") in the electron beam path, the regular radiation and the radiation from the excited electrons can be easily separated and only pulses from the latter arrive -- once per revolution -- at the experiment. Thus, the arrival time of the pulses is now perfectly accommodated for modern high resolution time-of-flight spectrometers.

Users will be able to examine band structures with higher precision

"The development of the Pulse Picking by Resonant Excitation (PPRE) was science driven by our user community working with single bunch techniques. They demand more beamtime to improve studies on e.g. graphene, topological insulators and other "hot topics" in material science like the current debates about high Tc-Superconductors, magnetic ordering phenomena and catalytic surface effects for energy storage. Moreover, with pulse picking techniques at hand, we are now well prepared for our future light source with variable pulse lengths: BESSY-VSR, where users will appreciate pulse selection on demand to readily switch from high brightness to ultrashort pulses according to their individual needs" says Karsten Holldack, corresponding author of the paper.

First tests successful

The researchers have proven the workability of their method with ARTOF-time-of-flight spectrometers at different undulators and beamlines as well as in BESSY II's regular user mode. "Here we could certainly benefit from long year experiences with emitc       tance manipulation," says Dr. P. Kuske acting as head of the accelerator part of the team. Thanks to accelerator developments in the past, we are capable of even picking ultrashort pulses out of the bunch trains in low-alpha operation, a special operation mode of BESSY II. At last, the users can, already right now, individually switch -- within minutes -- between high static flux and the single pulse without touching any settings at their instruments and the sample.


Story Source:

The above story is based on materials provided by Helmholtz-Zentrum Berlin für Materialien und Energie. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Holldack, R. Ovsyannikov, P. Kuske, R. Müller, A. Schälicke, M. Scheer, M. Gorgoi, D. Kühn, T. Leitner, S. Svensson, N. Mårtensson, A. Föhlisch. Single bunch X-ray pulses on demand from a multi-bunch synchrotron radiation source. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5010

Cite This Page:

Helmholtz-Zentrum Berlin für Materialien und Energie. "X-ray pulses on demand from electron storage rings." ScienceDaily. ScienceDaily, 30 May 2014. <www.sciencedaily.com/releases/2014/05/140530092749.htm>.
Helmholtz-Zentrum Berlin für Materialien und Energie. (2014, May 30). X-ray pulses on demand from electron storage rings. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2014/05/140530092749.htm
Helmholtz-Zentrum Berlin für Materialien und Energie. "X-ray pulses on demand from electron storage rings." ScienceDaily. www.sciencedaily.com/releases/2014/05/140530092749.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) — A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) — Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Samsung Unveils $30,000 'Dream Doghouse'

Samsung Unveils $30,000 'Dream Doghouse'

Buzz60 (Mar. 5, 2015) — On display at the Crufts dog show in England, the &apos;dog kennel of the future&apos; comes with features like a doggie treadmill and Samsung tablet. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins