Featured Research

from universities, journals, and other organizations

Rare chemical phenomenon that could be harnessed to harvest solar energy demonstrated by researchers

Date:
June 2, 2014
Source:
National University of Singapore
Summary:
The chemical reaction responsible for propelling microscopic crystals to leap distances up to hundreds of times their own size when they are exposed to ultraviolet (UV) light has been successfully unraveled by a team of international scientists. This popping effect, akin to the bursting of popcorn kernels at high temperatures, demonstrates the conversion of light into mechanical motion. It is the first instance of a “photosalient effect” driven by a photochemical reaction in solids to be reported.

This is a schematic diagram showing the popping nature of the crystals under UV light, a property that is very similar to the popping of corns on a hot plate.
Credit: National University of Singapore

A team of international scientists led by Professor Jagadese J Vittal of the Department of Chemistry at the National University of Singapore's (NUS) Faculty of Science has successfully unraveled the chemical reaction responsible for propelling microscopic crystals to leap distances up to hundreds of times their own size when they are exposed to ultraviolet (UV) light.

Related Articles


This popping effect, akin to the bursting of popcorn kernels at high temperatures, demonstrates the conversion of light into mechanical motion. It is the first instance of a "photosalient effect" driven by a photochemical reaction in solids to be reported. The rare phenomenon provides a new way to transfer light energy into mechanical motion, and potentially offers a fresh approach to harness solar energy to power light-driven actuators and mechanical devices.

These novel findings were published as the cover story in the English version of German scientific journal Angewandte Chemie International Edition on 2 June 2014.

Popcorn-like explosion of tiny crystals demonstrated

The NUS team has been actively looking for ways to control the reactivity of solids. While studying the metal complex polymerisation in the solid state, Mr Raghavender Medishetty, a PhD candidate, and Ms Bai Zhaozhi, a third-year undergraduate student, of the Department of Chemistry at the NUS Faculty of Science, found that very tiny crystals leap violently when exposed to UV light. Interestingly, even when the crystals are irradiated with weak UV light, the single crystals burst violently to travel up to hundreds of times their sizes. Such a distance is equivalent to that of a human jumping few hundred metres.

To understand the reactions behind the self-actuation of the crystals, the NUS team worked with a research team from the New York University Abu Dhabi led by Associate Professor Panče Naumov to capture the rapid motion of the crystals with an optical microscope coupled to a high-speed camera. They also collaborated with a research team from the Max Plank Institute for Solid State Research in Germany, led by Professor Robert E. Dinnebier to model the kinetics by time-resolved powder X-ray diffraction methods.

Through the use of a variety of analytical methods, the researchers discovered that the cause for the popping and disintegration of these single crystals was due to the strain generated during the photochemical reaction in the crystal, leading to the formation of metal coordination polymers. Sudden expansion of volume during this reaction results in the release of the stress in the form of ballistic events. Such a chemical reaction is very similar to the popping of corn kernels on a hot plate as a result of rapid expansion of the inner kernel compared to the outer shell.

Elaborating on the findings, Prof Vittal said, "Photoactuated movements are induced by the application of light to certain type of crystals, but they are observed to be less efficient than the biomechanical motions of plant and animal tissues. In our work, we observed that the conversion of energy in the crystals may be able to mimic the motility of biological systems and provide a new way to transfer light energy into mechanical motion."

He added, "Our work validates that the so called "bad" UV light from sources such as the sun can be utilised to convert chemical reactions to drive mechanical motions with practical uses. Knowledge and application of such behaviour is very important towards addressing the global energy crisis."

This study opens doors for further studies into materials for alternative energy conversion.

Further research

The NUS research team is examining a series of new compounds to better understand the mechanism and enhance the efficiency of the photosalient effect. They are also conducting systematic studies to look into the effects of chemical modification on the photosalient effect.

The team hopes to eventually develop new materials that could convert solar energy effectively into mechanical energy. In addition, the team also hopes to leverage on the principle of the photosalient effect to create a new source of reversible chemical energy by controlling the shape and size of crystals used for energy conversion.


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Raghavender Medishetty, Ahmad Husain, Zhaozhi Bai, Tomče Runčevski, Robert E. Dinnebier, Panče Naumov, Jagadese J. Vittal. Titelbild: Single Crystals Popping Under UV Light: A Photosalient Effect Triggered by a [2 2] Cycloaddition Reaction (Angew. Chem. 23/2014). Angewandte Chemie, 2014; 126 (23): 5821 DOI: 10.1002/ange.201403852

Cite This Page:

National University of Singapore. "Rare chemical phenomenon that could be harnessed to harvest solar energy demonstrated by researchers." ScienceDaily. ScienceDaily, 2 June 2014. <www.sciencedaily.com/releases/2014/06/140602100146.htm>.
National University of Singapore. (2014, June 2). Rare chemical phenomenon that could be harnessed to harvest solar energy demonstrated by researchers. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/06/140602100146.htm
National University of Singapore. "Rare chemical phenomenon that could be harnessed to harvest solar energy demonstrated by researchers." ScienceDaily. www.sciencedaily.com/releases/2014/06/140602100146.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins