Featured Research

from universities, journals, and other organizations

Doing more with less: in cellulo structure determinations

Date:
June 2, 2014
Source:
International Union of Crystallography
Summary:
Anyone involved in macromolecular crystallography will know that for many years scientists have had to rely on a multi-stage process utilizing protein, usually expressed in engineered cells, which is then extracted and purified before crystallization in vitro and finally prepared for analysis. As a counter to this time-consuming and substantial scientific effort, there are a number of examples of protein crystallization events occurring in vivo, with next to no human input. In a case presented in a recent paper, an insect virus exploits the phenomenon as part of its life cycle.

Anyone involved in macromolecular crystallography will know that for many years scientists have had to rely on a multi-stage process utilizing protein, usually expressed in engineered cells, which is then extracted and purified before crystallization in vitro and finally prepared for analysis.

Related Articles


As a counter to this time-consuming and substantial scientific effort, there are a number of examples of protein crystallization events occurring in vivo, with next to no human input. In a case presented in a recent paper an insect virus exploits the phenomenon as part of its life cycle. Not surprisingly an issue with intracellular protein crystals is that they are typically very small, limited by the size of the cell. However, microfocus beamlines at synchrotron light sources prove here to be capable and refined in the analysis of micron-scale in vivo samples.

A group of scientists from the Diamond Light Source and the University of Oxford, UK has been able to study crystals inside the cells directly using X-ray analysis without complex attempts to extract and prepare samples. It would not be out of place to assume that the presence of cellular material might compromise the experiment. However, the researchers’ results show that the exact opposite may actually be true; the cell maintains the crystals in an environment amenable to the collection of data.

It will be interesting to see if an improved understanding of protein crystallization in vivo can bring more targets within reach of such analysis. Certainly continued technical developments, including increased photon flux and reduced beam size, will improve the signal-to-noise ratio. Together with more efficient data processing, this means that we will be able to do more with less and exploit novel microcrystal targets of increasing complexity for in vivo structural studies.

Story Source:

The above story is based on materials provided by International Union of Crystallography. The original article was written by Jonathan Agbenyega. Note: Materials may be edited for content and length.


Journal Reference:

  1. Danny Axford, Xiaoyun Ji, David I. Stuart, Geoff Sutton. In cellulostructure determination of a novel cypovirus polyhedrin. Acta Crystallographica Section D Biological Crystallography, 2014; 70 (5): 1435 DOI: 10.1107/S1399004714004714

Cite This Page:

International Union of Crystallography. "Doing more with less: in cellulo structure determinations." ScienceDaily. ScienceDaily, 2 June 2014. <www.sciencedaily.com/releases/2014/06/140602104756.htm>.
International Union of Crystallography. (2014, June 2). Doing more with less: in cellulo structure determinations. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2014/06/140602104756.htm
International Union of Crystallography. "Doing more with less: in cellulo structure determinations." ScienceDaily. www.sciencedaily.com/releases/2014/06/140602104756.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bionic Ants Could Be Tomorrow's Factory Workers

Bionic Ants Could Be Tomorrow's Factory Workers

Reuters - Innovations Video Online (Mar. 30, 2015) Industrious 3D printed bionic ants working together could toil in the factories of the future, says German technology company Festo. The robotic insects cooperate and coordinate their actions and movements to achieve a common aim. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
You Won't Be Driving Tesla's Mystery Product

You Won't Be Driving Tesla's Mystery Product

Newsy (Mar. 30, 2015) Tesla CEO Elon Musk announced a new product line will debut April 30, but it&apos;s not a car. Video provided by Newsy
Powered by NewsLook.com
Solar Impulse Departs Myanmar for China

Solar Impulse Departs Myanmar for China

AFP (Mar. 30, 2015) Solar Impulse 2 takes off from Myanmar&apos;s second biggest city of Mandalay and heads for China&apos;s Chongqing, the fifth flight of a landmark journey to circumnavigate the globe powered solely by the sun. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Internet Giants Drive Into the Electric Vehicle Space

Internet Giants Drive Into the Electric Vehicle Space

Reuters - Business Video Online (Mar. 30, 2015) Internet companies are looking to disrupt the auto industry with new smart e-vehicles, but widespread adoption in Asia may not be cured by new Chinese investments. Pamela Ambler reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins