Featured Research

from universities, journals, and other organizations

Pathway between gut, liver regulates bone mass: Biological process behind role of vitamin B12 in bone formation unravelled

Date:
June 9, 2014
Source:
Wellcome Trust Sanger Institute
Summary:
A previously unknown biological process involving vitamin B12 and taurine that regulates the production of new bone cells has been uncovered by researchers. This pathway could be a potential new target for osteoporosis treatment. Through the study, researchers found that bone mass was severely reduced at eight weeks of age in the offspring of mice with vitamin B12 deficiency. Giving the mother a single injection of vitamin B12 during pregnancy was enough to prevent stunted growth and the onset of osteoporosis in the offspring.

Researchers have uncovered a previously unknown biological process involving vitamin B12 and taurine that regulates the production of new bone cells. This pathway could be a potential new target for osteoporosis treatment.

In humans it is well known that vitamin deficiencies lead to stunted growth, but the underlying mechanisms have long been a mystery. In this study, the team was able to piece together the biological process that leads to the production of new bone by studying the offspring of mice lacking the Gastric Intrinsic Factor gene, which is active in the stomach and allows the gut to absorb vitamin B12.

"Bone cells aren't solely studied in isolation in the lab as both local and systemic factors play an important role in their function, so it's important to unpick the multitude of biological factors that can affect their proliferation," says Dr Pablo Roman-Garcia, a first author from the Wellcome Trust Sanger Institute. "We were amazed to find a new system that controls bone mass through a protein expressed, of all the places, in the stomach."

The researchers found that bone mass was severely reduced at eight weeks of age in the offspring of mice with vitamin B12 deficiency. Giving the mother a single injection of vitamin B12 during pregnancy was enough to prevent stunted growth and the onset of osteoporosis in the offspring. The team was surprised to find that B12-deficient mice had only one-third of the normal number of bone-creating osteoblast cells, but had no change in bone-degrading osteoclast cells.

Reducing vitamin B12 levels in bone cells in the laboratory did not affect the function of the bone-forming cells directly, while under the same conditions it affected liver cell functions profoundly. These findings suggested to researchers that the liver has an important role to play. This was confirmed when they showed that liver cells from the offspring of B12-deficient mothers were unable to produce taurine. When these mice were fed regular doses of taurine at three weeks of age, they recovered bone mass and grew normally.

"While the importance of taurine is yet to be fully understood, this research shows that vitamin B12 plays a role in regulating taurine production and that taurine plays an important role in bone formation," Dr Vidya Velagapudi, Head of the Metabolomics Unit at the Institute for Molecular Medicine Finland. "To date we have focussed only on vitamin B12-deficient populations, but the next stages of this research will need to confirm the connection between vitamin B12, taurine and bone formation in general populations."

While the focus of this study was the impact of maternal vitamin B12 deficiency on offspring in mouse models, there are promising parallels between these findings and data from human patients. Samples collected by Kocaeli University Hospital, Turkey from children born of nutritionally vitamin B12-deficient mothers also showed a significant decrease in levels of vitamin B12 and taurine. In addition, older patients with vitamin B12 deficiency from a study by the Institute for Molecular Medicine, Finland displayed a statistically positive correlation, suggesting that vitamin B12 plays a key role in regulating taurine synthesis and bone formation in humans of all ages.

"The discovery of this unanticipated pathway between gut, liver and bone would not have been possible without the use of mouse molecular genetics and studies in the clinic that allowed us to understand interactions between these organs," says Dr Vijay K Yadav, a senior author from the Sanger Institute. "The fact that the vitamin B12-taurine-bone pathway affects only bone formation and appears to play the same role in mice and human beings raises the prospect that targeting this pathway through pharmacological means could be a novel approach toward an anabolic treatment of osteoporosis."


Story Source:

The above story is based on materials provided by Wellcome Trust Sanger Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pablo Roman-Garcia, Isabel Quiros-Gonzalez, Lynda Mottram, Liesbet Lieben, Kunal Sharan, Arporn Wangwiwatsin, Jose Tubio, Kirsty Lewis, Debbie Wilkinson, Balaji Santhanam, Nazan Sarper, Simon Clare, George S. Vassiliou, Vidya R. Velagapudi, Gordon Dougan, Vijay K. Yadav. Vitamin B12–dependent taurine synthesis regulates growth and bone mass. Journal of Clinical Investigation, 2014; DOI: 10.1172/JCI72606

Cite This Page:

Wellcome Trust Sanger Institute. "Pathway between gut, liver regulates bone mass: Biological process behind role of vitamin B12 in bone formation unravelled." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609205304.htm>.
Wellcome Trust Sanger Institute. (2014, June 9). Pathway between gut, liver regulates bone mass: Biological process behind role of vitamin B12 in bone formation unravelled. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/06/140609205304.htm
Wellcome Trust Sanger Institute. "Pathway between gut, liver regulates bone mass: Biological process behind role of vitamin B12 in bone formation unravelled." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609205304.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins