Featured Research

from universities, journals, and other organizations

Magnetic cooling enables efficient, 'green' refrigeration

Date:
June 10, 2014
Source:
American Institute of Physics (AIP)
Summary:
Researchers have developed a promising novel approach for magnetic cooling that’s far more efficient and ‘greener’ than today’s standard fluid-compression form of refrigeration. One novel magnetic cooling approach relies on solid magnetic substances called magnetocaloric materials to act as the refrigerant in miniaturized magnetic refrigerators.

The rotation of the HoMn2O5 crystal in a constant magnetic field around 10K changes its temperature, which can be used for the liquefaction of helium and hydrogen.
Credit: Applied Physics Letters/ M. Balli, et. al

Magnetic cooling is a promising new refrigeration technology boasting several advantages - ranging from lower energy consumption to eliminating the use of hazardous fluids - that combine to make it a much more environmentally friendly option than today's standard fluid-compression form of refrigeration.

One novel magnetic cooling approach, developed by a team of Canadian-Bulgarian researchers, relies on solid magnetic substances called magnetocaloric materials to act as the refrigerant in miniaturized magnetic refrigerators. As the team describes in the journal Applied Physics Letters, from AIP Publishing, these materials are the key to the development of a "green" cooling technology whose efficiency is able to scale directly with the generated magnetocaloric effect.

The magnetocaloric effect is "the thermal response of a magnetic material to the change of an external magnetic field, which manifests as a change in its temperature," explained Mohamed Balli, a researcher in the physics department at the Universitι de Sherbrooke in Quebec, Canada.

Ferromagnetic materials, for example, are known to heat up when magnetized and to cool down when the magnetic field is removed.

"The presence of a magnetic field makes ferromagnetic materials become more ordered. This is accompanied by disorder within the atomic lattice, which causes an increase in the material's temperature," Balli said. "Inversely, the absence of a magnetic field means that the atomic lattice is more ordered and results in a temperature decrease. Magnetic refrigeration essentially works by recapturing produced cooling energy via a heat transfer fluid, such as water."

The researchers originally set out to measure the standard magnetocaloric effect in the multiferroic compound HoMn2O5, because this material possesses an insulating behavior that prevents energy losses associated with electric currents passing through it when altering its magnetic field.

But, much to their surprise, they discovered that a giant magnetocaloric effect can be obtained by simply rotating a crystal of HoMn2O5 within a constant magnetic field - without requiring moving it in and out of the magnetic field zone (which is the case for materials exhibiting standard magnetocaloric effects).

This discovery is an important step toward the development of magnetic cooling technology, and will likely lead to efficient, "green" cooling systems for both domestic and industrial applications. "Using the rotating magnetocaloric effect means that the energy absorbed by the cooling machine can be largely reduced," noted Balli. "It also opens the door to building simplified, efficient, and compact magnetic cooling systems in the future."

Next, the team plans to explore the possibility of improving the rotating magnetocaloric effect in HoMn2O5 crystals and related materials.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Balli, S. Jandl, P. Fournier, M. M. Gospodinov. Anisotropy-enhanced giant reversible rotating magnetocaloric effect in HoMn2O5 single crystals. Applied Physics Letters, June 10, 2014 DOI: 10.1063/1.4880818

Cite This Page:

American Institute of Physics (AIP). "Magnetic cooling enables efficient, 'green' refrigeration." ScienceDaily. ScienceDaily, 10 June 2014. <www.sciencedaily.com/releases/2014/06/140610112339.htm>.
American Institute of Physics (AIP). (2014, June 10). Magnetic cooling enables efficient, 'green' refrigeration. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/06/140610112339.htm
American Institute of Physics (AIP). "Magnetic cooling enables efficient, 'green' refrigeration." ScienceDaily. www.sciencedaily.com/releases/2014/06/140610112339.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) — Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) — Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) — Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins