Featured Research

from universities, journals, and other organizations

Potential new treatment approach for lung cancer

Date:
June 24, 2014
Source:
Rutgers Cancer Institute of New Jersey
Summary:
More than a third of all human cancers are driven by mutations in a family of genes known as Ras. Ras has long been considered to be a target that does not respond to cancer treating drugs, but recent research suggests new possibilities. Investigators have demonstrated that targeting a metabolic dependency downstream of Ras could provide therapeutic benefit to patients with Ras-driven lung cancers.

Eileen White, PhD.
Credit: Nick Romanenko

According to the National Cancer Institute, more than a third of all human cancers, including a high percentage of pancreas, lung and colon cancers are driven by mutations in a family of genes known as Ras. Ras has long been considered to be a target that does not respond to cancer treating drugs, but recent research suggests new possibilities. Investigators at Rutgers Cancer Institute of New Jersey have demonstrated that targeting a metabolic dependency downstream of Ras could provide therapeutic benefit to patients with Ras-driven lung cancers.

Related Articles


Activation of oncogenic Ras promotes tumor growth but also activates the cellular self-cannibalization process of autophagy that recycles intracellular components to help sustain that growth. In research published in the current online edition of Cancer Discovery (doi: 10.1158/2159-8290.CD-14-0363), senior author Eileen White, associate director for basic science at the Cancer Institute of New Jersey, and colleagues tested the consequence of removing the autophagy gene known as ATG7 from laboratory models with non-small-cell lung cancer. Their goal was to establish if systemic genetic inactivation of autophagy would have selective anti-tumor activity against Ras-driven lung cancers while sparing most normal tissues. If so, then this would provide evidence that therapeutically targeting autophagy would be a new approach to treat these cancers.

Their research showed that systemic loss of ATG7 caused loss of fat tissue and sensitivity to fasting, but few other damaging consequences to normal tissue in the short-term. In contrast to most normal tissues, switching off autophagy by deleting ATG7 was dramatically destructive to established non-small-cell lung cancers. This demonstrated that non-small-cell lung cancer selectively requires autophagy for tumor development and that therapeutically targeting autophagy may be an alternative to targeting Ras.

One of the challenges in administering cancer therapy is that the treatment designed to destroy the disease can also have a negative effect on healthy, normal tissue. "The anti-tumor activity seen in our study occurred prior to the destruction of normal tissue. This suggests that the action of selectively and deliberately blocking the autophagy process may have therapeutic benefit for non-small-cell lung cancer and other Ras-driven cancers," notes Dr. White, who is also a distinguished professor of molecular biology and biochemistry at Rutgers School of Arts and Sciences.

White and colleagues will work with other collaborators at the Cancer Institute to develop early-phase patient clinical trials based on the findings from this study in the near future.


Story Source:

The above story is based on materials provided by Rutgers Cancer Institute of New Jersey. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Karsli-Uzunbas, J. Y. Guo, S. Price, X. Teng, S. V. Laddha, S. Khor, N. Y. Kalaany, T. Jacks, C. S. Chan, J. D. Rabinowitz, E. White. Autophagy is Required for Glucose Homeostasis and Lung Tumor Maintenance. Cancer Discovery, 2014; DOI: 10.1158/2159-8290.CD-14-0363

Cite This Page:

Rutgers Cancer Institute of New Jersey. "Potential new treatment approach for lung cancer." ScienceDaily. ScienceDaily, 24 June 2014. <www.sciencedaily.com/releases/2014/06/140624105237.htm>.
Rutgers Cancer Institute of New Jersey. (2014, June 24). Potential new treatment approach for lung cancer. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2014/06/140624105237.htm
Rutgers Cancer Institute of New Jersey. "Potential new treatment approach for lung cancer." ScienceDaily. www.sciencedaily.com/releases/2014/06/140624105237.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins