Featured Research

from universities, journals, and other organizations

Fracking flowback could pollute groundwater with heavy metals

Date:
June 25, 2014
Source:
Cornell University
Summary:
The chemical makeup of wastewater generated by “hydrofracking” could cause the release of tiny particles in soils that often strongly bind heavy metals and pollutants, exacerbating the environmental risks during accidental spills, Cornell University researchers have found.

The chemical makeup of wastewater generated by "hydrofracking" could cause the release of tiny particles in soils that often strongly bind heavy metals and pollutants, exacerbating the environmental risks during accidental spills, Cornell University researchers have found.

Previous research has shown 10 to 40 percent of the water and chemical solution mixture injected at high pressure into deep rock strata, surges back to the surface during well development. Scientists at the College of Agriculture and Life Sciences studying the environmental impacts of this "flowback fluid" found that the same properties that make it so effective at extracting natural gas from shale can also displace tiny particles that are naturally bound to soil, causing associated pollutants such as heavy metals to leach out.

They described the mechanisms of this release and transport in a paper published in the American Chemical Society journal Environmental Science & Technology.

The particles they studied are colloids -- larger than the size of a molecule but smaller than what can be seen with the naked eye -- which cling to sand and soil due to their electric charge.

In experiments, glass columns were filled with sand and synthetic polystyrene colloids. They then flushed the column with different fluids -- deionized water as a control, and flowback fluid collected from a Marcellus Shale drilling site -- at different rates of flow and measured the amount of colloids that were mobilized.

On a bright field microscope, the polystyrene colloids were visible as red spheres between light-grey sand grains, which made their movement easy to track. The researchers also collected and analyzed the water flowing out of the column to quantify the colloid concentration leaching out.

They found that fewer than five percent of colloids were released when they flushed the columns with deionized water. That figure jumped to 32 to 36 percent when flushed with flowback fluid. Increasing the flow rate of the flowback fluid mobilized an additional 36 percent of colloids.

They believe this is because the chemical composition of the flowback fluid reduced the strength of the forces that allow colloids to remain bound to the sand, causing the colloids to actually be repelled from the sand.

"This is a first step into discovering the effects of flowback fluid on colloid transport in soils," said postdoctoral associate Cathelijne Stoof, a co-author on the paper.

The authors hope to conduct further experiments using naturally occurring colloids in more complex field soil systems, as well as different formulations of flowback fluid collected from other drilling sites.

Stoof said awareness of the phenomenon and an understanding of the mechanisms behind it can help identify risks and inform mitigation strategies.

"Sustainable development of any resource requires facts about its potential impacts, so legislators can make informed decisions about whether and where it can and cannot be allowed, and to develop guidelines in case it goes wrong," Stoof said. "In the case of spills, you want to know what happens when the fluid moves through the soil."

This research was supported by the Cornell University Agricultural Experiment Station's USDA Hatch funds, as well as the U.S. National Science Foundation and the National Natural Science Foundation of China.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wenjing Sang, Cathelijne R. Stoof, Wei Zhang, Verσnica L. Morales, Bin Gao, Robert W. Kay, Lin Liu, Yalei Zhang, Tammo S. Steenhuis. Effect of Hydrofracking Fluid on Colloid Transport in the Unsaturated Zone. Environmental Science & Technology, 2014; 140625080136008 DOI: 10.1021/es501441e

Cite This Page:

Cornell University. "Fracking flowback could pollute groundwater with heavy metals." ScienceDaily. ScienceDaily, 25 June 2014. <www.sciencedaily.com/releases/2014/06/140625131829.htm>.
Cornell University. (2014, June 25). Fracking flowback could pollute groundwater with heavy metals. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2014/06/140625131829.htm
Cornell University. "Fracking flowback could pollute groundwater with heavy metals." ScienceDaily. www.sciencedaily.com/releases/2014/06/140625131829.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins