Featured Research

from universities, journals, and other organizations

'Microbe sniffer' could point way to next-generation bio-refining

Date:
June 30, 2014
Source:
University of Faculty of Science British Columbia
Summary:
A new biosensor could help optimize bio-refining processes that produce fuels, fine chemicals and advanced materials. It works by sniffing out naturally occurring bacterial networks that are genetically wired to break down wood polymer. "Nature has already invented microbial processes to degrade lignin--the tough polymer in wood and plant biomass that currently stymies industrial bio-refining," says a microbiologist researcher.

Red cells are carrying DNA that codes for lignin transformation. Green cells are biosensors detecting lignin transformation products.
Credit: Cameron Strachan, University of British Columbia

A new biosensor invented at the University of British Columbia could help optimize bio-refining processes that produce fuels, fine chemicals and advanced materials.

It works by sniffing out naturally occurring bacterial networks that are genetically wired to break down wood polymer.

"Nature has already invented microbial processes to degrade lignin--the tough polymer in wood and plant biomass that currently stymies industrial bio-refining," says UBC microbiologist Steven Hallam. "We needed to do the detective work, and develop the right toolkit, to isolate these processes in naturally occurring microbial communities from coal beds."

Developed by Hallam and his team, the biosensor screens DNA from environmental samples to isolate the lignin-busting genetic machinery encoded in the samples' resident microbes.

" "We've found that bacteria harness adaptive genetic circuits to break down lignin and that these circuits can be mobilized in nature via horizontal gene transfer," says Hallam. "Our biosensor and screening enables us to uncover this genetic network, and then further optimize it in the laboratory."

The improved understanding of adaptive, eco-engineered lignin transformation could also lead to more tunable industrial processes.

"We need to remain sensitive to the complexity of natural processes that act on lignin, but this project has unearthed some basic organizing principles that will also enable us to exploit microbial processes more quickly for any number of engineering applications," says UBC researcher Cameron Strachan. "It's a biological search function for biologists interested in harnessing naturally assembled genetic machinery."

The sensor, screening and adaptive genetic circuitry discovered with them have been licensed through the University Industry Liaison Office. A spin-off company, guided by the e@UBC program, is looking into ways to increase the scale of production of this technology.

Background

The findings validating the screening were published in the Proceedings of the National Academy of Sciences. The work was funded by Genome Canada, Genome BC and the Tula Foundation. Lignin, a promising and abundant feedstock, comprises up to 40 per cent of plant biomass. However lignin has so far resisted efficient decomposition into fuels, fine chemicals and advanced materials.

Most bio-refining agents are based on enzymes engineered from fungi. In this case, UBC researchers used the innovative screening approach to source and test genetic arrays from bacteria inhabiting coal beds. The biosensor reacts to a set of small molecules that are the residue of lignin's natural degradation process. The researchers surmised that coal -- ancient wood and plant biomass deposited before the evolution of fungal lignin degradation pathways -- might contain bacterial pathways involved in the transformation process.


Story Source:

The above story is based on materials provided by University of Faculty of Science British Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cameron R. Strachan, Rahul Singh, David Vaninsberghe, Kateryna Ievdokymenko, Karen Budwill, William W. Mohn, Lindsay D. Eltis, and Steven J. Hallam. Metagenomic scaffolds enable combinatorial lignin transformation. PNAS, June 2014 DOI: 10.1073/pnas.1401631111

Cite This Page:

University of Faculty of Science British Columbia. "'Microbe sniffer' could point way to next-generation bio-refining." ScienceDaily. ScienceDaily, 30 June 2014. <www.sciencedaily.com/releases/2014/06/140630164057.htm>.
University of Faculty of Science British Columbia. (2014, June 30). 'Microbe sniffer' could point way to next-generation bio-refining. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/06/140630164057.htm
University of Faculty of Science British Columbia. "'Microbe sniffer' could point way to next-generation bio-refining." ScienceDaily. www.sciencedaily.com/releases/2014/06/140630164057.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins