Featured Research

from universities, journals, and other organizations

How do ants get around? Ultra-sensitive machines measure their every step

Date:
July 1, 2014
Source:
Society for Experimental Biology
Summary:
How do ants manage to move so nimbly whilst coordinating three pairs of legs and a behind that weighs up to 60 percent of their body mass? Scientists have recently developed a device that may reveal the answer and could even help design micro-robots in the future. Researchers used an elastic polycarbonate material to produce a miniature force plate. Springs arranged at right angles to each other enabled forces to be measured across the plate in the micro-Newton range.

Red Ant (stock image). Ants walk using an "alternating tripod" system: the front and back legs of one side and the middle leg of the other side move together during one step.
Credit: Š Anatolii / Fotolia

How do ants manage to move so nimbly whilst coordinating three pairs of legs and a behind that weighs up to 60% of their body mass? German scientists have recently developed a device that may reveal the answer.

Measuring the forces generated by single limbs is vital to understanding the energetics of animal locomotion. However, with very small animals such as insects, this becomes problematic. Dr Reinhardt (Friedrich-Schiller University) used an elastic polycarbonate material to produce a miniature force plate. Springs arranged at right angles to each other enabled forces to be measured across the plate in the micro-Newton range.

The ants (Formica polyctena) walk using an "alternating tripod" system: the front and back legs of one side and the middle leg of the other side move together during one step. It was unknown, however, if a different gait is used for faster running speeds. Ants were made to travel down a runway built on top of the force plate, equipped with a high-speed camera to record a motion sequence. The researchers found that the basic alternating tripod gait did not alter at higher speeds, with the ants instead increasing their stride length and number of steps. The ants appear to adopt a strategy known as "grounded running"; that is, they reach higher speeds without using an "aerial phase" when all joints lose contact with the ground. This improves stability by keeping the centre of mass low, reducing the risk of falling and helping the ants to turn quickly & travel over rough terrain.

The device was also used to investigate ants travelling up a vertical surface. "During level locomotion, the typical vertical force of an ant leg is around 70 ľN" Dr Reinhardt described. "The situation is different in vertical climbing. The front legs generate forces as large as the body weight -- around 20 mg. We expect that the animals can still generate much larger forces, for instance when transporting food or during fights."

The force plate was built using stereolithography technology. This uses a special photocurable polymer which solidifies when exposed to ultra-violet light. A vat is filled with the liquid polymer and a UV laser scanned across it to build up the structure layer by layer. Because the laser can be set to trace any design, this technology could be used in a wealth of applications. "Our measuring device can be applied far beyond the field of insect biomechanics" Dr Reinhardt stated. "For example, the force plate could be invaluable to the design and testing of micro-robots."


Story Source:

The above story is based on materials provided by Society for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Society for Experimental Biology. "How do ants get around? Ultra-sensitive machines measure their every step." ScienceDaily. ScienceDaily, 1 July 2014. <www.sciencedaily.com/releases/2014/07/140701193249.htm>.
Society for Experimental Biology. (2014, July 1). How do ants get around? Ultra-sensitive machines measure their every step. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/07/140701193249.htm
Society for Experimental Biology. "How do ants get around? Ultra-sensitive machines measure their every step." ScienceDaily. www.sciencedaily.com/releases/2014/07/140701193249.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins