Featured Research

from universities, journals, and other organizations

Giant earthquakes help predict volcanic eruptions

Date:
July 8, 2014
Source:
CNRS
Summary:
Researchers have for the first time observed the response of Japanese volcanoes to seismic waves produced by the giant Tohoku-oki earthquake of 2011. Their conclusions reveal how earthquakes can impact volcanoes and should help to assess the risk of massive volcanic eruptions worldwide.

Imaging seismic susceptibility makes it possible to detect regions affected by high-pressure volcanic fluids. The image in the background is catalogued as 'Red Fuji' (Katsushika Hokusai, 1830).
Credit: Copyright Florent Brenguier

Researchers at the Institut des Sciences de la Terre (CNRS/Université Joseph Fourier/Université de Savoie/IRD/IFSTTAR) and the Institut de Physique du Globe de Paris (CNRS/Université Paris Diderot/IPGP), working in collaboration with Japanese researchers, have for the first time observed the response of Japanese volcanoes to seismic waves produced by the giant Tohoku-oki earthquake of 2011. Their conclusions, published in Science on July 4, 2014, reveal how earthquakes can impact volcanoes and should help to assess the risk of massive volcanic eruptions worldwide.

Related Articles


Until the early 2000s, seismic noise* was systematically removed from seismological analyses. This background noise is in fact associated with seismic waves caused by ocean swell. These waves, which can be compared to permanent, continuous microseisms, can be used by seismologists instead of earthquakes (which are highly localized over a limited time period) to image Earth's interior and its evolution over time, rather like an ultrasound scan on a global scale.

Now, seismic noise has been used for the continuous measurement of perturbations of the mechanical properties of Earth's crust. Researchers at the Institut des Sciences de la Terre (CNRS/Université Joseph Fourier/Université de Savoie/IRD/IFSTTAR) and the Institut de Physique du Globe de Paris (CNRS/Université Paris Diderot/IPGP) have applied this novel method while working in collaboration with Japanese colleagues using the Hi-net network, which is the world's densest seismic network (comprising more than 800 seismic detectors throughout Japan).

After the giant Tohoku-oki earthquake of 2011, the researchers analyzed over 70 terabytes of seismic data from the network. For the first time, they showed that the regions where the perturbations of Earth's crust were the greatest were not those where the shocks were the strongest. They were in fact localized under volcanic regions, especially under Mount Fuji. The new method thus enabled the scientists to observe the anomalies caused by the perturbations from the earthquake in volcanic regions under pressure. Mount Fuji, which exhibits the greatest anomaly, is probably under great pressure, although no eruption has yet followed the Tohoku-oki earthquake. The 6.4-magnitude seism that occurred four days after the 2011 quake confirms the critical state of the volcano in terms of pressure. These findings lend support to theories that the last eruption of Mount Fuji in 1707 was probably triggered by the giant 8.7-magnitude Hoei earthquake, which took place 49 days before the eruption.

More generally, the results show how regions affected by high-pressure volcanic fluids can be characterized using seismic data from dense seismic detector networks. This should help to anticipate the risk of major volcanic eruptions worldwide.

*Seismic noise includes all the unwanted components affecting an analysis, such as the noise produced by the measuring device itself or external perturbations inadvertently picked up by the measuring devices.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Brenguier, M. Campillo, T. Takeda, Y. Aoki, N. M. Shapiro, X. Briand, K. Emoto, H. Miyake. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops. Science, 2014; 345 (6192): 80 DOI: 10.1126/science.1254073

Cite This Page:

CNRS. "Giant earthquakes help predict volcanic eruptions." ScienceDaily. ScienceDaily, 8 July 2014. <www.sciencedaily.com/releases/2014/07/140708092129.htm>.
CNRS. (2014, July 8). Giant earthquakes help predict volcanic eruptions. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2014/07/140708092129.htm
CNRS. "Giant earthquakes help predict volcanic eruptions." ScienceDaily. www.sciencedaily.com/releases/2014/07/140708092129.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) — In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) — "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) — Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) — Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins