Featured Research

from universities, journals, and other organizations

Lung cancer study hints at new treatments

Date:
July 9, 2014
Source:
Washington University in St. Louis
Summary:
Studying the most common type of lung cancer, researchers have uncovered mutations in a cell-signaling pathway that plays a role in forming tumors. The new knowledge may expand treatments for patients because drugs targeting some of these genetic changes already are available or are in clinical trials.

Studying the most common type of lung cancer, researchers have uncovered mutations in a cell-signaling pathway that plays a role in forming tumors. The new knowledge may expand treatments for patients because drugs targeting some of these genetic changes already are available or are in clinical trials.

Related Articles


Reporting July 9 in Nature, investigators from The Cancer Genome Atlas (TCGA), including researchers at Washington University School of Medicine in St. Louis, Harvard Medical School and other institutions, studied tumors from 230 patients with lung adenocarcinoma.

"This is the first time we have had a panoramic look at the genomic landscape of this many lung tumor specimens," said oncologist Ramaswamy Govindan, MD, professor of medicine at Washington University and TCGA lung cancer project co-chair. "These studies reinforce the opinion that lung cancer is a very heterogeneous disease."

Combined with an earlier study of 178 patients with lung squamous cell carcinoma, TCGA researchers now have published genetic data on about 400 lung cancer patients and are working to analyze tumors from 600 more. The investigators included scientists at The Genome Institute at Washington University and other major sequencing centers.

In the new study, among the myriad genetic changes observed in adenocarcinoma, one cell-signaling pathway stood out. About 75 percent of the samples had mutations that overactivated a pathway called RTK/RAS/RAF, known for roles in tumor growth.

"It is remarkable how important the RTK/RAS/RAF pathway appears to be," said Govindan, who treats patients at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine. "Mutations in this particular pathway promote cancer cell proliferation. What is amazing is how many ways this pathway can be activated.

"We also know these tumors are not static," he added. "They evolve. We have to be looking at multiple biopsies over time to see how the tumor cells escape, inhibiting one pathway and becoming resistant to therapies."

The researchers also found other relevant mutations in important genes such as EGFR, NF1, NF2 and MET. Such findings could be valuable to a clinical trial known as ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trial) that Govindan is leading. The trial will involve the screening of tumors from several thousand lung cancer patients for alterations in genes called EGFR and ALK. After surgery to remove their tumors, these patients will be invited to participate in clinical trials studying drugs targeting these dysfunctional genes.

The ALCHEMIST trial builds on the current study and also potentially will provide additional tumor samples for genomic analysis. A large sample size is important in accurately identifying mutations driving lung tumor growth.

"Patients with lung cancer often have substantial tobacco exposure, which leads to a lot of mutations," Govindan said. "We may not be able to find significant mutations unless we study multiple samples from several thousand patients."

Despite such progress in understanding lung cancer -- the most common cause of cancer deaths worldwide -- the investigators emphasize that the best way to reduce lung cancer deaths is to help people stop smoking and encourage others to never start.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. The original article was written by Julia Evangelou Strait. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eric A. Collisson, Lori Huelsenbeck-Dill, Ma et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014; DOI: 10.1038/nature13385

Cite This Page:

Washington University in St. Louis. "Lung cancer study hints at new treatments." ScienceDaily. ScienceDaily, 9 July 2014. <www.sciencedaily.com/releases/2014/07/140709135459.htm>.
Washington University in St. Louis. (2014, July 9). Lung cancer study hints at new treatments. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/07/140709135459.htm
Washington University in St. Louis. "Lung cancer study hints at new treatments." ScienceDaily. www.sciencedaily.com/releases/2014/07/140709135459.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins