Featured Research

from universities, journals, and other organizations

'Yin and yang' of malaria parasite development

Date:
July 9, 2014
Source:
University of Nottingham
Summary:
A ‘Herculean study’ into malaria parasite development is completed – bringing scientists closer to disrupting the life-cycle of this highly efficient parasite. Scientists searching for new drug and vaccine targets to stop transmission of one of the world's deadliest diseases believe they are closer than ever to disrupting the life-cycle of this highly efficient parasite.

This is Dr. Tewari in insectory.
Credit: The University of Nottingham

'Herculean study' into malaria parasite development is completed -- bringing scientists closer to disrupting the life-cycle of this highly efficient parasite.

Scientists searching for new drug and vaccine targets to stop transmission of one of the world's deadliest diseases believe they are closer than ever to disrupting the life-cycle of this highly efficient parasite.

Dr Rita Tewari in the School of Life Sciences at The University of Nottingham has completed what she describes as a 'Herculean study' into the roles played by the 30 protein phosphatases and 72 kinases -- enzymes that act as the 'yin and yang' switches for proteins -- as the malaria parasite develops in the body and then in the mosquito gut.

Research is published in the academic journal Cell Host and Microbe, describes the work that has just been completed into the role of protein phosphatases.

Dr Tewari said: "This latest study identifies how protein phosphatases regulate parasite development and differentiation. Our research provides a systematic functional analysis for all the 30 phosphatases in Plasmodium berghei -- the parasite responsible for causing malaria in rodents. These enzymes work in tandem with the protein kinases identified by the same team in a complementary study carried out in 2010. If we can find out what proteins are essential for these parasites to develop and divide, maybe we can target those proteins and arrest them with drugs or vaccines."

Dr Tewari's new research was carried out in collaboration with the Medical Research Council's National Institute for Medical Research (MRC-NIMR) in London, together with colleagues at Oxford University, Imperial College, London and King Abdullah University of Science and Technology, Saudi Arabia.

Dr Tony Holder, Head of the MRC-NIMR Division of Parasitology, said: "Inhibitors of protein kinases are already used in treatments for other diseases and there is growing interest to develop phosphatase inhibitors as drugs. Identifying the key kinases and phosphatases in the parasite life cycle will define the targets for drug development to treat human malaria and prevent its transmission in communities by the mosquito."

Malaria sufferer becomes malaria researcher

Born and brought up in Dehli, Dr Tewari had malaria seven times as a child. It remains one of the most deadly scourges of the developing world -- killing up to one million people and causing clinical disease in 300 to 500 million people every year. In humans the deadliest form of malaria is caused by the single cell parasite Plasmodium falciparum. Disrupting the lifecycle of the malaria parasite could save the lives of millions of people. Dr Tewari now leads her own malaria research laboratory at The University of Nottingham with her own mosquito insectary. Her laboratory has received well over £1.2m from the MRC, UK for its research into malaria parasite biology. It has taken her team, together with collaborators at Imperial College London, eight years to identify every one of the protein phosphatases and protein kinases responsible for malaria parasite development.

High tech research to go back to basics

Malaria parasite development and cues controlling it is still not fully understood. What Dr Tewari's team is trying to do is understand the basic developmental biology of these parasites.

Using a number of molecular cell biology and biochemical techniques, Dr Tewari and her team found that half the phosphatase genes (16) could not be 'knocked out' suggesting some of these genes could be future drug targets as their presence is critical to parasite growth.

Dr Tewari said: "Interestingly, out of the genes that could be knocked out (14), six were found to be crucial for sexual development and hence could be drug targets for parasite transmission to and from the mosquito. The research gathered here using the mouse malaria parasite can be directly related to the human malaria parasite, as many of the genes share a very similar homology and symptoms of the diseases are very similar.

A molecular Taoism Protein kinases and phosphatases are crucial for many stages of the malaria parasite lifecycle. They are two families of enzymes that play crucial roles in regulating many cell processes -- the 'yin and yang' of cell development. Dr David Guttery, first author on the manuscript and now at the University of Leicester, said: "Building on our previous research on the protein kinases, this study represents a complementary view of the protein phosphorylation mechanism and gives us tantalising clues to the major players in this pathway. It will be exciting to see in the future which proteins are targeted by the protein kinases and phosphatases, and whether they act upon each other too."

Understanding a complex parasite life-cycle

When the female mosquito bites and ingests infected blood, parasite gamete fertilisation takes place in the mosquito gut. The parasites then colonises the mosquito, multiply and migrate to the salivary glands, so that when the mosquito bites again they are injected into the human host. The parasite is then transported to the liver when it multiplies again and within 48 hours millions of parasites are released to invade into red blood cells, producing high fever and sickness and potentially overwhelming its host.

Dr Tewari said: "Resistance to anti-malarial drugs is increasing. As a result, the race to uncover new vaccines and more effective drugs to treat disease and block malaria transmission is becoming ever more important."

Earlier this year, the journal Nature Chemistry published a landmark study involving Dr Tewari, which showed the potential of the enzyme N-myristoyltransferase as a possible therapeutic target.

Dr Tewari's group has also published high impact papers interpreting the functions of two unique protein phosphatases -- PPKL and SHLP1 -- which could help in the design of new drugs to treat malaria.

Research 'packs a powerful punch'

Dr Tewari's group is also focusing on the role of diverse proteins involved in parasite cell shape and polarity, which are important for motility and host cell invasion. It also studies proteins that play a crucial role in cell-cycle progression and division as the parasite multiplies. The aim is to identify the best drug or vaccine targets along the way.

David Brook, Professor of Human Genetics and Director of Research in the School of Life Sciences, said: "This is another example of the outstanding research being conducted by Rita and her group. It's another paper in a leading international journal from a growing list of such papers. Despite being a small research group, Rita's lab packs a powerful punch and they are really putting Nottingham on the world map for malaria research. "


Story Source:

The above story is based on materials provided by University of Nottingham. Note: Materials may be edited for content and length.


Journal Reference:

  1. David S. Guttery, Benoit Poulin, Abhinay Ramaprasad, Richard J. Wall, David J.P. Ferguson, Declan Brady, Eva-Maria Patzewitz, Sarah Whipple, Ursula Straschil, Megan H. Wright, Alyaa M.A.H. Mohamed, Anand Radhakrishnan, Stefan T. Arold, Edward W. Tate, Anthony A. Holder, Bill Wickstead, Arnab Pain, Rita Tewari. Genome-wide Functional Analysis of Plasmodium Protein Phosphatases Reveals Key Regulators of Parasite Development and Differentiation. Cell Host & Microbe, 2014; 16 (1): 128 DOI: 10.1016/j.chom.2014.05.020

Cite This Page:

University of Nottingham. "'Yin and yang' of malaria parasite development." ScienceDaily. ScienceDaily, 9 July 2014. <www.sciencedaily.com/releases/2014/07/140709135912.htm>.
University of Nottingham. (2014, July 9). 'Yin and yang' of malaria parasite development. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2014/07/140709135912.htm
University of Nottingham. "'Yin and yang' of malaria parasite development." ScienceDaily. www.sciencedaily.com/releases/2014/07/140709135912.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) — Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) — More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) — Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) — Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins