Featured Research

from universities, journals, and other organizations

Amphibians can acquire resistance to deadly fungus

Date:
July 9, 2014
Source:
University of South Florida (USF Health)
Summary:
Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing population declines of amphibians, bats, corals, bees and snakes. New research reveals that amphibians can acquire behavioral or immunological resistance to a deadly chytrid fungus implicated in global amphibian population declines.

Red-eye frog Agalychnis callidryas. Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing population declines of amphibians, bats, corals, bees and snakes. New research reveals that amphibians can acquire behavioral or immunological resistance to a deadly chytrid fungus implicated in global amphibian population declines.
Credit: © Aleksey Stemmer / Fotolia

Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing population declines of amphibians, bats, corals, bees and snakes. New research from the University of South Florida published in the journal Nature reveals that amphibians can acquire behavioral or immunological resistance to a deadly chytrid fungus implicated in global amphibian population declines.

"Acquired resistance is important because it is the basis of vaccination campaigns based on 'herd immunity', where immunization of a subset of individuals protects all from a pathogen," said Jason Rohr, an associate professor of integrative biology who led the research team with Taegan McMahon, a USF alumnus who is now an assistant professor of biology at the University of Tampa.

One experiment in the study revealed that after just one exposure to the chytrid fungus, frogs learned to avoid the deadly pathogen.

In subsequent experiments in which frogs could not avoid the fungus, frog immune responses improved with each fungal exposure and infection clearance, significantly reducing fungal growth and increasing the likelihood that the frogs survived subsequent chytrid infections.

"The amphibian chytrid fungus suppresses immune responses of amphibian hosts, so many researchers doubted that amphibians could acquire effective immunity against this pathogen," Rohr said. "However, our results suggest that amphibians can acquire immunological resistance that overcomes chytrid-induced immunosuppression and increases their survival."

Rohr also noted that "variation in the degree of acquired resistance might partly explain why fungal pathogens cause extinctions of some animal populations but not others."

"The discovery of immunological resistance to this pathogenic fungus is an exciting fundamental breakthrough that offers hope, and a critical tool for dealing with the global epidemic affecting wild amphibian populations," says Liz Blood, program officer in the National Science Foundation's Directorate for Biological Sciences, which funded the research through its MacroSystems Biology Program.

Conservationists have collected hundreds of amphibian species threatened by the fungus and are maintaining them in captivity with the hope to someday re-establish them in the wild. However, reintroduction efforts so far have failed because of the persistence of the fungus at collection sites.

"A particularly exciting result from our research was that amphibian exposure to dead chytrid induced a similar magnitude of acquired resistance as exposure to the live fungus," McMahon said.

"This suggests that exposure of water bodies or captive-bred amphibians to dead chytrid or chytrid antigens might offer a practical way to protect chytrid-naïve amphibian populations and to facilitate the reintroduction of captive-bred amphibians to locations in the wild where the fungus persists."

"Immune responses to fungi are similar across vertebrates and many animals are capable of learning to avoid natural enemies," Rohr emphasized. "Hence, our findings offer hope that amphibians and other wild animals threatened by fungal pathogens -- such as bats, bees, and snakes -- might be capable of acquiring resistance to fungi and thus might be rescued by management approaches based on herd immunity."

Rohr cautioned, however, that "although this approach is promising, more research is needed to determine the success of this strategy."


Story Source:

The above story is based on materials provided by University of South Florida (USF Health). Note: Materials may be edited for content and length.


Journal Reference:

  1. Taegan A. McMahon, Brittany F. Sears, Matthew D. Venesky, Scott M. Bessler, Jenise M. Brown, Kaitlin Deutsch, Neal T. Halstead, Garrett Lentz, Nadia Tenouri, Suzanne Young, David J. Civitello, Nicole Ortega, J. Scott Fites, Laura K. Reinert, Louise A. Rollins-Smith, Thomas R. Raffel, Jason R. Rohr. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 2014; 511 (7508): 224 DOI: 10.1038/nature13491

Cite This Page:

University of South Florida (USF Health). "Amphibians can acquire resistance to deadly fungus." ScienceDaily. ScienceDaily, 9 July 2014. <www.sciencedaily.com/releases/2014/07/140709140403.htm>.
University of South Florida (USF Health). (2014, July 9). Amphibians can acquire resistance to deadly fungus. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/07/140709140403.htm
University of South Florida (USF Health). "Amphibians can acquire resistance to deadly fungus." ScienceDaily. www.sciencedaily.com/releases/2014/07/140709140403.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins