Featured Research

from universities, journals, and other organizations

New meteorological insight into mid-level clouds

Date:
July 21, 2014
Source:
Naval Research Laboratory
Summary:
At medium altitudes ranging from 6,000 feet to 20,000 feet above mean sea level, water droplets in altocumulus clouds can remain in a supercooled liquid phase that cannot be reasonably resolved in current atmospheric models. New meteorological research characterizes mid-level, mixed phase altocumulus clouds in unprecedented detail.

Research meteorologists at the U.S. Naval Research Laboratory (NRL) Marine Meteorology Division (MMD) and Scripps Institution of Oceanography, employing the Navy's Mid-Course Doppler Radar (MCR) at Cape Canaveral, were able to characterize mid-level, mixed phase altocumulus clouds in unprecedented detail. The plot depicts the MCR-derived vertical velocity with the solid red and blue contours bounding upward and downward motion, respectively. The white curves depict the cloud layer position and the dashed blue line the peak cloud top radiative cooling. The black arrows depict cloud circulation features. The radiation-induced subsidence is shown by the horizontally oriented ellipses near cloud-top.
Credit: U.S. Naval Research Laboratory

Research meteorologists at the U.S. Naval Research Laboratory (NRL) Marine Meteorology Division (MMD) and Scripps Institution of Oceanography, employing the Navy's Mid-Course Doppler Radar (MCR) at Cape Canaveral, were able to characterize mid-level, mixed-phase altocumulus clouds.

In altocumulus clouds, at medium altitudes ranging from 6,000 feet to 20,000 feet above mean sea level, water droplets can remain in a supercooled liquid phase at temperatures below zero degrees Celsius, the freezing point of water. The supercooled liquid water found at temperatures generally between 0 and 35 below zero -- the temperature where supercooled water droplets begin to spontaneously freeze in a process referred to as homogeneous nucleation -- can freeze on contact and thus possibly impact aircraft weapons and sensors or control surfaces effecting flight safety.

"Altocumulus clouds are relatively thin mid-level clouds that cannot be reasonably resolved in current atmospheric models. To mitigate their potential impact on Navy and Department of Defense operations, these clouds must be better parameterized" said Dr. Jerry Schmidt, meteorologist, NRL MMD Mesoscale Modeling Section.

In previous ground breaking research, Schmidt discovered that the MCR -- a very high resolution C-band dual polarization radar -- is precise and versatile enough to resolve individual ice crystals and raindrops within clouds, making it a unique research tool.

In collaboration with Dr. Piotr Flatau of Scripps Institution of Oceanography and independent radar consultant Robert Yates, the team analyzed coincidental aircraft observations, ground-based instrumentation readings, and radar data from the MCR to document the structure of a thin and narrow band of mixed-phase altocumulus clouds.

The group then analyzed the diabatic heating and cooling structure of the altocumulus layer associated with the vertical flux divergence of the longwave and shortwave radiation as well as the evaporation and sublimation of liquid and ice particles over a deep virga layer that extended 1500 meters below the cloud base. When analyzing the high-resolution observations of the real-world atmosphere, the study found that actual observed processes did not precisely match with existing cloud formation and dissipation theories.

"In particular, it was found that the presence of layer-wide horizontal gradient in the cloud top radiative cooling rates -- associated with the magnitude of the cloud liquid water content -- creates a circulating flow in the atmosphere," Schmidt said. "This directs warm and dry air downward over the central portion of the narrow altocumulus cloud band, which begins to evaporate the interior cloud liquid water." Ultimately, the cloud's longevity or demise then hinges on whether or not a quasi-balanced state can arise between the water production terms within the cloud layer and the radiatively-induced mesoscale subsidence circulation the liquid production ultimately creates.

Fully analyzed results and follow-on field experiments will enable NRL scientists to better understand and model the composition, generation and decay of mid-level, and eventually low and high level clouds. The goal is to develop the capability to provide more accurate tactical scale cloud information to Navy and Department of Defense (DoD) mission planners and warfighting decision makers in support of global operations.

Funded by the Naval Surface Warfare Center, Dahlgren, Va., the project will continue to investigate the potential for these results to be applied to larger-scale thicker and warmer stratiform clouds, as well as higher and colder cirrus clouds. In summer 2015, the group plans to add UAS-based sensors, CLOUDSAT radarand satellite-based LIDAR measurement, and additional surface instrumentation, such as a microwave radiometer, to the next field studies.

http://www.youtube.com/watch?v=Bymq1lb40nY


Story Source:

The above story is based on materials provided by Naval Research Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Naval Research Laboratory. "New meteorological insight into mid-level clouds." ScienceDaily. ScienceDaily, 21 July 2014. <www.sciencedaily.com/releases/2014/07/140721123829.htm>.
Naval Research Laboratory. (2014, July 21). New meteorological insight into mid-level clouds. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2014/07/140721123829.htm
Naval Research Laboratory. "New meteorological insight into mid-level clouds." ScienceDaily. www.sciencedaily.com/releases/2014/07/140721123829.htm (accessed September 14, 2014).

Share This



More Earth & Climate News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) — In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) — Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) — The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins