Featured Research

from universities, journals, and other organizations

Antioxidant biomaterial promotes healing

Date:
July 24, 2014
Source:
Northwestern University
Summary:
The first-ever inherently antioxidant biomaterial has been created by researcher. It has the potential to prevent failure in medical devices and surgical implants. The lead researcher said the new biomaterial could be used to create scaffolds for tissue engineering, coat or build safer medical devices, promote healing in regenerative medicine, and protect cells, genes, and viruses during drug delivery. He added that the new biomaterial is easy to make and inexpensive.

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern's Guillermo Ameer, most of the time, that response can be negative and affect the device's function.

Related Articles


"You will always get an inflammatory response to some degree," said Ameer, professor of biomedical engineering in McCormick School of Engineering and Applied Science and professor of surgery in the Feinberg School of Medicine. "A problem with commonly used plastic materials, in particular, is that in addition to that inflammatory response, oxidation occurs."

We all need oxygen to survive, but a high concentration of oxygen in the body can cause oxidative reactions to fall out of balance, which modifies natural proteins, cells, and lipids and causes them to function abnormally. This oxidative stress is toxic and can contribute to chronic disease, chronic inflammation, and other complications that may cause the failure of implants.

For the first time ever, Ameer and his team have created a biodegradable biomaterial that is inherently antioxidant. The material can be used to create elastomers, liquids that turn into gels, or solids for building devices that are more compatible with cells and tissues. The research is described in the June 26 issue of Biomaterials.

"Plastics can self-oxidize, creating radicals as part of their degradation process," Ameer said. "By implanting devices made from plastics, the oxidation process can injure nearby cells and create a cascade that leads to chronic inflammation. Our materials could significantly reduce the inflammatory response that we typically see."

Ameer created the biomaterial, which is a polyester based on citric acid, by incorporating vitamin C as part of the building blocks. In preliminary experiments, his team coated vascular grafts with the antioxidant biomaterial, and the grafts were evaluated in animals by Ameer's long-time collaborator Melina Kibbe, professor of surgery and the Edward G. Elcock Professor of Surgical Research at Feinberg and a vascular surgeon at Northwestern Memorial Hospital.

As part of the foreign body response, grafts tend to inflame nearby cells and slowly scar over time, which eventually leads to failure. When the antioxidant vascular graft was implanted, however, the scarring was significantly reduced. Ameer's team, funded by a proof-of-concept grant from the Northwestern University Clinical and Translational Sciences Institute, also found that a water-soluble, thermoreversible version of the material sped up the healing of diabetic ulcers. Because the material is biodegradable, it harmlessly is absorbed by the body over time.

"In the past, people have added antioxidant vitamins to a polymer and blended it in," Ameer said. "That can affect the mechanical properties of the material and limit how much antioxidant you can add, so it doesn't work well. What we're doing is different. We're building a material that is already inherently, intrinsically antioxidant."

Ameer said the new biomaterial could be used to create scaffolds for tissue engineering, coat or build safer medical devices, promote healing in regenerative medicine, and protect cells, genes, and viruses during drug delivery. He added that the new biomaterial is easy to make and inexpensive.

"Citric acid is affordable and in pretty much everything we come in contact with on a daily basis -- food and beverages, skin and hair products, drugs, etc.," Ameer said. "It's a common, inexpensive raw material to use, and our system can stabilize vitamin C, an antioxidant that we are all familiar with."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robert van Lith, Elaine K. Gregory, Jian Yang, Melina R. Kibbe, Guillermo A. Ameer. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. Biomaterials, 2014; 35 (28): 8113 DOI: 10.1016/j.biomaterials.2014.06.004

Cite This Page:

Northwestern University. "Antioxidant biomaterial promotes healing." ScienceDaily. ScienceDaily, 24 July 2014. <www.sciencedaily.com/releases/2014/07/140724171958.htm>.
Northwestern University. (2014, July 24). Antioxidant biomaterial promotes healing. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/07/140724171958.htm
Northwestern University. "Antioxidant biomaterial promotes healing." ScienceDaily. www.sciencedaily.com/releases/2014/07/140724171958.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins