Featured Research

from universities, journals, and other organizations

Irreversible inhibitor for KRAS gene mutation involved in lung, colon, and pancreatic cancers

Date:
July 28, 2014
Source:
UT Southwestern Medical Center
Summary:
Cancer researchers have found a molecule that selectively and irreversibly interferes with the activity of a mutated cancer gene common in 30 percent of tumors.

UT Southwestern Medical Center cancer researchers have found a molecule that selectively and irreversibly interferes with the activity of a mutated cancer gene common in 30 percent of tumors.

The molecule, SML-8-73-1 (SML), interferes with the KRAS gene, or Kirsten rat sarcoma viral oncogene homolog. The gene produces proteins called K-Ras that influence when cells divide. Mutations in K-Ras can result in normal cells dividing uncontrollably and turning cancerous. These mutations are particularly found in cancers of the lung, pancreas, and colon. In addition, people who have the mutated gene are less responsive to therapy.

Researchers have unsuccessfully tried to develop a drug to inhibit K-Ras for some 30 years.

"RAS proteins including KRAS have not been 'druggable' for many decades despite a lot of effort from academia and industry," said senior author Dr. Kenneth Westover, Assistant Professor of Radiation Oncology and Biochemistry, and a member of UT Southwestern's Harold C. Simmons Cancer Center.

"We are exploring irreversible inhibitors as a solution, which we believe may pave the way for the development of KRAS-targeted compounds with therapeutic potential and perhaps compounds that target other RAS family proteins involved in cancer," Dr. Westover said.

Dr. Westover works as both a clinician as a member of the Lung Radiation Oncology Team at the Simmons Cancer Center, and as a researcher. The Westover laboratory investigates the molecular basis of cancer with an eye toward developing compounds that perturb cancer biology, and therefore have potential to become therapies. Dr. Westover's lab has been particularly targeting KRAS because this gene is the most commonly mutated oncogene in cancer.

Building on previous work, Dr. Westover and fellow investigators used a technique called X-ray crystallography to determine what happens when SML is added to KRAS carrying the G12C mutation, a hallmark of tobacco-associated lung cancer and present in 25,000 of the new cases of lung cancer in the U.S. annually.

Researchers found that SML irreversibly binds to mutated KRAS, making the KRAS G12C inactive. SML competes with molecules that KRAS naturally binds to, called GTP and GDP, and is not removable, even when GTP and GDP are present at very high levels. This attribute is what makes SML an irreversible inhibitor -- neither GDP nor GTP are able to knock it off and take its place.

The researchers then used a technique called mass spectrometry to determine that SML is not only irreversible, but selective -- binding only to KRAS and not the roughly 100 other members of the RAS protein family that have very similar structures.

"We believe SML may be the first irreversible and selective inhibitor of KRAS," said Dr. Westover, who was recruited to UT Southwestern with funds from the state-funded Cancer Research and Prevention Institute of Texas. "As a next step, we are improving the SML compound to facilitate studies involving living cancer cells, and eventually animals and humans."

Other UT Southwestern researchers involved include Dr. Zhe Chen, Assistant Professor of Biophysics, and postdoctoral researchers Dr. John Hunter, first author, Dr. Deepak Gurbani, and Dr. Martin Carrasco, in Radiation Oncology and Biochemistry.

The research, published online in the journal Proceedings of the National Academy of Sciences, was supported by funds from the Cancer Research and Prevention Institute of Texas, and The Welch Foundation.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. C. Hunter, D. Gurbani, S. B. Ficarro, M. A. Carrasco, S. M. Lim, H. G. Choi, T. Xie, J. A. Marto, Z. Chen, N. S. Gray, K. D. Westover. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proceedings of the National Academy of Sciences, 2014; 111 (24): 8895 DOI: 10.1073/pnas.1404639111

Cite This Page:

UT Southwestern Medical Center. "Irreversible inhibitor for KRAS gene mutation involved in lung, colon, and pancreatic cancers." ScienceDaily. ScienceDaily, 28 July 2014. <www.sciencedaily.com/releases/2014/07/140728153644.htm>.
UT Southwestern Medical Center. (2014, July 28). Irreversible inhibitor for KRAS gene mutation involved in lung, colon, and pancreatic cancers. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/07/140728153644.htm
UT Southwestern Medical Center. "Irreversible inhibitor for KRAS gene mutation involved in lung, colon, and pancreatic cancers." ScienceDaily. www.sciencedaily.com/releases/2014/07/140728153644.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins