Featured Research

from universities, journals, and other organizations

High-temperature superconductors: Neutron scattering experiment resolves contentious superconducting issue

Date:
July 31, 2014
Source:
Technische Universitaet Muenchen
Summary:
Scientists around the globe are trying to understand the phenomenon of loss-free electric power transmission by high-temperature superconductors. Materials that exhibit this effect at room temperature would bear huge technical potential. Recently symmetry changes in the electronic phases of high-temperature superconductors near their transition temperature had been attributed to doping effects. But an international team of scientists has now discovered that solely spin dynamics of the electrons are responsible for these spontaneous changes.

At the PUMA three-axis spectrometer of Technische Universitaet Muenchen's Research Neutron Source Heinz Maier-Leibnitz in Garching (Germany) Dr. Jitae Park proved that the formation of nematic phases does not stem from doping effects, but rather is a result of sudden changes in the preferential direction of the movement of electron spins.
Credit: Volker Lannert / DAAD

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 C -- a temperature that can be achieved by cooling with liquid nitrogen.

The location of atomic nuclei and binding electrons in a material is determined by its crystal structure. However, electrons additionally have an electromagnetic angular momentum, referred to as spin. When many spins become coupled in a material, electromagnetic disturbances with a preferential orientation can form, creating so-called nematic phases. Many researchers see a key to understanding the phenomenon of high-temperature superconducting in these nematic phases.

Spin-dynamics or doping effect?

A group of scientists discovered microscopic impurities during investigations under a scanning tunneling microscope. They thus suspected that these impurities were responsible for the formation of the nematic phases -- analog to silicon, where doping with minute impurities induces electric conductivity.

Dr. Jitae Park, a scientist at the Technische Universitaet Muenchen (TUM), and his colleagues at the Beijing National Laboratory for Condensed Matter Physics and the Department of Physics and Astronomy of Rice University in Houston/Texas, have now shown that this is not the case, but rather that a completely different effect is at work.

Using the PUMA three-axis spectrometer at the Heinz Maier-Leibniz Center in Garching (Germany), they investigated samples of a ferrous high-temperature superconductor doped with small amounts of nickel at various temperatures. The scientists proved that the formation of nematic phases has no direct relationship to doping with nickel.

Collective movements of electron spins, in contrast, have a strong effect on the formation of nematic phases. These form at temperatures that are significantly higher than the transition temperatures. The moment, the superconducting effect reaches its maximum, the nematic phase disappears completely.

"With our experiment, we have shown that the formation of nematic phases does not stem from doping effects, but rather is a result of sudden changes in the preferential direction of the movement of electron spins," explains Jitae Park, who carried out the experiment at the FRM II Research Neutron Source of TU Muenchen. "Researchers will now be able to focus their future research on the relationship between spin dynamics in nematic phases and high-temperature superconductivity."

Efficient experimental design

Neutron scattering experiments on magnetism are extremely elaborate because they normally require numerous experiments at various neutron sources around the globe to obtain a complete set of data. In this case, the measurement data were collected in a series of cleverly designed experiments at the PUMA instrument in the record time of only four weeks.

The experiment also represented a particular challenge because the researchers could only use very small crystals. The scientists chose an iron pnictide, a compound made of iron, barium and arsenic, which they doped with small amounts of nickel. However, under normal conditions this material forms twin crystals, which do not allow measuring of nematic phases.

"The formation of twin crystals can be suppressed by applying pressure," says Jitae Park, "but as a result we could use only very small crystals." Thus the researchers opted to carry out the experiment at the FRM II Research Neutron Source in Garching because of its very high neutron flux.

The research was funded by the Chinese Academy of Sciences, the Chinese Ministry of Science and Technology, the National Natural Science Foundation of China (NSFC), the National Science Foundation of the USA, the Robert A. Welch Foundation and the German Alexander von Humboldt Foundation.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xingye Lu, J. T. Park, Rui Zhang, Huiqian Luo, Andriy H. Nevidomskyy, Qimiao Si, Pengcheng Dai. Nematic spin correlations in the tetragonal state of uniaxial-strained BaFe2−xNixAs2. Science, July 31 2014 DOI: 10.1126/science.1251853

Cite This Page:

Technische Universitaet Muenchen. "High-temperature superconductors: Neutron scattering experiment resolves contentious superconducting issue." ScienceDaily. ScienceDaily, 31 July 2014. <www.sciencedaily.com/releases/2014/07/140731145939.htm>.
Technische Universitaet Muenchen. (2014, July 31). High-temperature superconductors: Neutron scattering experiment resolves contentious superconducting issue. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/07/140731145939.htm
Technische Universitaet Muenchen. "High-temperature superconductors: Neutron scattering experiment resolves contentious superconducting issue." ScienceDaily. www.sciencedaily.com/releases/2014/07/140731145939.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Superconductors: Physical Link to Strange Electronic Behavior

July 31, 2014 Scientists have new clues this week about one of the baffling electronic properties of the iron-based high-temperature superconductor barium iron nickel arsenide. Scientists have the first evidence, ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins