Featured Research

from universities, journals, and other organizations

Self-assembling anti-cancer molecules created in minutes: Like a self-assembling 'Lego Death Star'

Date:
August 3, 2014
Source:
University of Warwick
Summary:
Researchers have developed a simple and versatile method for making artificial anti-cancer molecules that mimic the properties of one of the body’s natural defense systems. The chemists have been able to produce molecules that have a similar structure to peptides which are naturally produced in the body to fight cancer and infection.

This is professor Peter Scott of the University of Warwick.
Credit: University of Warwick

Researchers have developed a simple and versatile method for making artificial anti-cancer molecules that mimic the properties of one of the body's natural defence systems.

Related Articles


The chemists, led by Professor Peter Scott at the University of Warwick, UK, have been able to produce molecules that have a similar structure to peptides which are naturally produced in the body to fight cancer and infection.

Published in Nature Chemistry, the molecules produced in the research have proved effective against colon cancer cells in laboratory tests, in collaboration with Roger Phillips at the Institute for Cancer Therapeutics, Bradford, UK.

Artificial peptides had previously been difficult and prohibitively expensive to manufacture in large quantities, but the new process takes only minutes and does not require costly equipment. Also, traditional peptides that are administered as drugs are quickly neutralised by the body's biochemical defences before they can do their job.

A form of complex chemical self-assembly, the new method developed at Warwick addresses these problems by being both practical and producing very stable molecules. The new peptide mimics, called triplexes, have a similar 3D helix form to natural peptides.

"The chemistry involved is like throwing Lego blocks into a bag, giving them a shake, and finding that you made a model of the Death Star" says Professor Scott. "The design to achieve that takes some thought and computing power, but once you've worked it out the method can be used to make a lot of complicated molecular objects."

Describing the self-assembly process behind the artificial peptides Professor Scott says: "When the organic chemicals involved, an amino alcohol derivative and a picoline, are mixed with iron chloride in a solvent, such as water or methanol, they form strong bonds and are designed to naturally fold together in minutes to form a helix. It's all thermodynamically downhill. The assembly instructions are encoded in the chemicals themselves."

"Once the solvent has been removed we are left with the peptide mimics in the form of crystals," says Professor Scott. "There are no complicated separations to do, and unlike a Lego model kit there are no mysterious bits left over. In practical terms, the chemistry is pretty conventional. The beauty is that these big molecules assemble themselves. Nature uses this kind of self-assembly to make complex asymmetric molecules like proteins all the time, but doing it artificially is a major challenge."

Whilst the peptide mimics created by the process have been successful in laboratory tests on colon cancer cells they will require further research before they can be used in clinical trials on patients. Nevertheless they are made of simple building blocks and in early tests the team have shown that they have very low toxicity to bacteria. "This is very unusual and promising selectivity," says Professor Scott.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alan D. Faulkner, Rebecca A. Kaner, Qasem M. A. Abdallah, Guy Clarkson, David J. Fox, Pratik Gurnani, Suzanne E. Howson, Roger M. Phillips, David I. Roper, Daniel H. Simpson, Peter Scott. Asymmetric triplex metallohelices with high and selective activity against cancer cells. Nature Chemistry, 2014; DOI: 10.1038/nchem.2024

Cite This Page:

University of Warwick. "Self-assembling anti-cancer molecules created in minutes: Like a self-assembling 'Lego Death Star'." ScienceDaily. ScienceDaily, 3 August 2014. <www.sciencedaily.com/releases/2014/08/140803193513.htm>.
University of Warwick. (2014, August 3). Self-assembling anti-cancer molecules created in minutes: Like a self-assembling 'Lego Death Star'. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/08/140803193513.htm
University of Warwick. "Self-assembling anti-cancer molecules created in minutes: Like a self-assembling 'Lego Death Star'." ScienceDaily. www.sciencedaily.com/releases/2014/08/140803193513.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins