Featured Research

from universities, journals, and other organizations

Uncovering 3-D structure of a key neuroreceptor

Date:
August 3, 2014
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
The 3-D structure of a crucial neuroreceptor has been revealed by scientists for the first time. The achievement has great implications for understanding the basic mechanism of electrical signal transmission between neurons and might help to design novel medicines to treat various neurological diseases.

EPFL scientists reveal for the first time the 3-D structure of a crucial neuroreceptor. The achievement has great implications for understanding the basic mechanism of electrical signal transmission between neurons and might help to design novel medicines to treat various neurological diseases.
Credit: Image courtesy of Ecole Polytechnique Fédérale de Lausanne

Neurons are the cells of our brain, spinal cord, and overall nervous system. They form complex networks to communicate with each other through electrical signals that are carried by chemicals. These chemicals bind to structures on the surface of neurons that are called neuroreceptors, opening or closing electrical pathways that allow transmission of the signal from neuron to neuron. One neuroreceptor, called 5HT3-R, is involved in conditions like chemotherapy-induced nausea, anxiety, and various neurological disorders such as schizophrenia. Despite its clinical importance, the exact way that 5HT3-R works has been elusive because its complexity has prevented scientists from determining its three-dimensional structure. Publishing in Nature, EPFL researchers have now uncovered for the first time the 3D structure of 5HT3-R, opening the way to understanding other neuroreceptors as well.

Related Articles


Neuroreceptors: structure and function

Communication between the neurons of our body is mediated by neuroreceptors that are embedded across the cell membrane of each neuron. Neuronal communication begins when a neuron releases a small molecule, called a 'neurotransmitter', onto a neighboring neuron, where it is identified by its specific neuroreceptor and binds to it. The neurotransmitter causes the neuroreceptor to open an electrically conducting channel, which allows the passage of electrical charge across the neuron's membrane. The membrane then becomes electrically conducting for a fraction of a millisecond, generating an electrical pulse that travels across the neuron. The family of neuroreceptors that work in this way is widespread across the nervous system, and is referred to as the "ligand-gated channel" family.

The mystery is how the binding of the neurotransmitter can induce the opening of an electrical channel to transport a signal into the neuron. The understanding of these molecular machines is of great medical importance, especially since neuroreceptors are involved in many neurological diseases. Currently, none of the mammalian ligand-gated channel neuroreceptors have been structurally described, which significantly limits our understanding of their function on a molecular level.

Uncovering the structure of 5HT3-R

The team of Horst Vogel at EPFL has used X-ray crystallography to determine the 3D structure of a representative ligand-gated channel neuroreceptor, the type-3 serotonin receptor (5HT3-R). This neuroreceptor recognizes the neurotransmitter serotonin and opens a transmembrane channel that allows electrical signals to enter certain neurons. The 5HT3 receptor was grown in and then isolated from human cell cultures, and finally crystallized.

But before obtaining the 5HT3-R crystals, the EPFL team had to overcome a number of challenges. First, the relatively large size of the membrane-embedded 5HT3-R, like that of other similar channel neuroreceptors, makes it notoriously difficult to purify in sufficient quality and quantity. After years of painstaking work, the EPFL scientists succeeded in obtaining a few milligrams of 5HT3-R, which was still not enough to grow crystals using conventional methods.

Still, the crystal quality was insufficient. To address this, Vogel's team used small antibodies, so-called nanobodies, which were obtained from llamas after the animals were injected with purified 5HT3-R. From a large library of isolated nanobodies, a particular one was found to form a stable complex with the 5HT3-R, and this complex eventually yielded crystals of exceptional quality.

After this, the procedure was straightforward: The crystals for X-ray crystallography were investigated at the synchrotron facilities at the Paul Scherrer Institut in Villigen and the European facilities in Grenoble. In this well-established technique, the crystals diffract X-rays in a characteristic pattern from which the 3D structure can be reconstructed.

The X-ray diffraction experiments yielded the 3D structure of 5HT3-R at an unprecedented resolution of 3.5 Ångstroms (3.5 millionths of a millimeter). The resulting 3D image shows a bullet-shaped 5HT3 receptor with its five subunits symmetrically arranged around a central water-filled channel that traverses the neuron's cell membrane. The channel can adopt two states: a closed, electrically non-conducting state or, after binding a neurotransmitter, an open, electrically conducting state that allows the flow of electrical charges in and out of the neuron to generate an electrical signal.

"We have now elucidated the molecular anatomy of a receptor that plays a central role in neuronal transmission," says Horst Vogel. "It is the first 3D structure of its kind and may serve as a blueprint for the other receptors of this family. In the next step, we have to improve the resolution of the structure, which might give us information on how to design novel medicines that influence this neuroreceptor's function."


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ghérici Hassaine, Cédric Deluz, Luigino Grasso, Romain Wyss, Menno B. Tol, Ruud Hovius, Alexandra Graff, Henning Stahlberg, Takashi Tomizaki, Aline Desmyter, Christophe Moreau, Xiao-Dan Li, Frédéric Poitevin, Horst Vogel, Hugues Nury. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 2014; DOI: 10.1038/nature13552

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Uncovering 3-D structure of a key neuroreceptor." ScienceDaily. ScienceDaily, 3 August 2014. <www.sciencedaily.com/releases/2014/08/140803193636.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2014, August 3). Uncovering 3-D structure of a key neuroreceptor. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/08/140803193636.htm
Ecole Polytechnique Fédérale de Lausanne. "Uncovering 3-D structure of a key neuroreceptor." ScienceDaily. www.sciencedaily.com/releases/2014/08/140803193636.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins