Featured Research

from universities, journals, and other organizations

Protective hinge process enables insulin to bind to cells

Date:
August 4, 2014
Source:
Case Western Reserve University
Summary:
Scientists have deciphered how the insulin molecule exploits a protective hinge to engage its primary binding site within the insulin receptor. "We discovered an essential mechanism for how insulin binds to target cells and thereby triggers an extraordinary cascade of biological signals," said a researcher. "Such molecular signaling, central to how we utilize and store fuels derived from our meals, has attracted international scientific study ever since the landmark 1969 elucidation of the storage structure of insulin by the late Nobel Laureate Dorothy C. Hodgkin in England."

Since its landmark discovery in 1922, insulin has improved the health and extended the lives of more than 500 million people worldwide with diabetes mellitus. Yet the question of how this key hormone binds to its target cells in the body's organs has posed an enduring scientific mystery. A global team of researchers from Cleveland, Australia, Chicago, India and Oregon has made a discovery about insulin and its structure that promises to enable design of new insulin products that will do a better job of regulating the metabolism of patients with diabetes.

The scientists, co-led by Michael A. Weiss, MD, PhD (Case Western Reserve School of Medicine, Cleveland) and Michael C. Lawrence, PhD (Walter and Eliza Hall Institute and the University of Melbourne, Australia), deciphered how the insulin molecule exploits a "protective hinge" to engage its primary binding site within the insulin receptor. The results of the team's interdisciplinary research appeared the first week of August in an online edition of PNAS (Proceedings of the National Academy of Sciences). Solving this problem required integration of synthetic, biochemical, biological, spectroscopic and crystallographic approaches.

"We discovered an essential mechanism for how insulin binds to target cells and thereby triggers an extraordinary cascade of biological signals," said Weiss, chairman of the Department of Biochemistry and Distinguished Research Professor at the Case Western Reserve School of Medicine. "Such molecular signaling, central to how we utilize and store fuels derived from our meals, has attracted international scientific study ever since the landmark 1969 elucidation of the storage structure of insulin by the late Nobel Laureate Dorothy C. Hodgkin in England."

In this investigation, Weiss, Lawrence and their colleagues discovered a protective hinge within insulin that, when closed, ensures that the hormone safely remains in a storage form until it is appropriate to open -- a structural transformation that allows docking to the surfaces of target cells of muscle, liver, fat and other tissues. Such docking is the first step in metabolic signaling, which, for example, enables the target cells to take in glucose (the sugar building block) and thereby avoid a build-up of glucose in the blood stream (hyperglycemia), a cardinal feature of diabetes mellitus.

Investigators uncovered the protective hinge by observing the intricate structural features as visualized in crystal structures in whose building blocks a single molecule of insulin is bound to fragments of the insulin receptor. Past studies, including the classical crystallographic studies by insulin structure pioneer Hodgkin, focus on groups of six insulin molecules (hexamers) in the absence of the receptor. This closed form of insulin is pertinent to how it is stored in the body or prepared in a pharmaceutical formulation. The hexamers contain three pairs (dimers) of insulin molecules. Each dimer contains a crossing point of eight aromatic rings, four from each insulin molecule. (Aromatic rings are closed-ring structures formed by carbon atoms within the molecule.) In the new pictures of the open and active form of the hormone, these aromatic rings dock into pockets of the cellular receptor. Insulin thus opens a hinge to expose its functional surface.

"We believe that the closed form of insulin evolved to permit its efficient production and safe storage within the pancreas," said Weiss. "Yet variant forms of insulin stabilized in this state have no biological activity."

These groundbreaking findings have led investigators to the next stage of research -- how to translate this discovery to make safer and more effective insulin products for patients. The ultimate goal is to develop new molecular forms of insulin that will ensure that the protective hinge opens within the insulin only when it should. Possible versions of newer, more effective insulin modalities are impressive: ultra-fast acting insulin formulations for "smart pumps," a strategic goal of the National Institutes of Health and the Juvenile Diabetes Research Foundation (JDRF); ultra-stable modes of insulin, which would benefit patients in the developing world with limited access to refrigeration; and even "smart" insulin molecules themselves, which stop working when the concentration of glucose in the blood goes below normal. Improvements in insulin safety and effectiveness promise to reduce the risk of long-term health consequences of diabetes such as kidney failure, blindness and foot amputations.

"We have addressed a real-world problem that has been part of a more than 40-year exploration for how insulin is made in the body, how it folds in the specialized beta-cells of the pancreas until it is ready for use, how it binds to a receptor in the cell and how the insulin degrades," Weiss said. "Promising new molecular designs for insulin are under study at Case Western Reserve and around the world that address all aspects of insulin structure, including optimization of the protective hinge."

Characterizing the insulin molecule has taken decades of research, and continues to this day: First, researchers sought to understand what insulin looks like when it is stored in the beta cell of the pancreas. Second, they need to show what insulin looks like when it is bound to the insulin-accepting receptor on the cell. Third, they want to illustrate how the receptor changes its shape in response to insulin binding to transmit a signal across the cell.

"Substantial progress toward the second milestone has been made by the present international collaborative team," Weiss said. "It is extraordinarily rare, and it is a privilege, to be part of such a team. We have sharper pictures now, and for the first time, we can visualize the part of the insulin molecule that is changing its shape and so looking different than in the landmark Hodgkin structure of 1969."


Story Source:

The above story is based on materials provided by Case Western Reserve University. The original article was written by Jeannette Spalding. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. G. Menting, Y. Yang, S. J. Chan, N. B. Phillips, B. J. Smith, J. Whittaker, N. P. Wickramasinghe, L. J. Whittaker, V. Pandyarajan, Z.-l. Wan, S. P. Yadav, J. M. Carroll, N. Strokes, C. T. Roberts, F. Ismail-Beigi, W. Milewski, D. F. Steiner, V. S. Chauhan, C. W. Ward, M. A. Weiss, M. C. Lawrence. Protective hinge in insulin opens to enable its receptor engagement. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1412897111

Cite This Page:

Case Western Reserve University. "Protective hinge process enables insulin to bind to cells." ScienceDaily. ScienceDaily, 4 August 2014. <www.sciencedaily.com/releases/2014/08/140804151137.htm>.
Case Western Reserve University. (2014, August 4). Protective hinge process enables insulin to bind to cells. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/08/140804151137.htm
Case Western Reserve University. "Protective hinge process enables insulin to bind to cells." ScienceDaily. www.sciencedaily.com/releases/2014/08/140804151137.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins