Featured Research

from universities, journals, and other organizations

The typhoid fever pathogen uses a cloaking mechanism to evade neutrophil neutralization

Date:
August 7, 2014
Source:
PLOS
Summary:
Typhoid fever is caused by systemic infection with Salmonella enterica Typhi. In contrast, infection with the closely related bacterium Salmonella enterica Thyphimurium is usually limited to the gut and causes less serious diarrheal disease. Research comparing the two pathogens reveals how S. Typhi avoids recognition and elimination by patrolling immune cells called neutrophils, allowing it to disseminate throughout the patient's body.

This image depicts a single cell experiment in which a human neutrophil was picked up by a micropipette (top panel) and brought into close contact with S. Typhimurium cells immobilized by optical tweezers. The neutrophil extends a pseudopod towards the bacteria (left bottom panel) and is allowed to phagocytose the pathogen (bottom right panel).
Credit: Heinrich & Bäumler, et al. CC-BY

Typhoid fever is caused by systemic (body-wide) infection with Salmonella enterica Typhi. In contrast, infection with the closely related bacterium Salmonella enterica Thyphimurium is usually limited to the gut and causes less serious diarrheal disease. Research published on August 7th in PLOS Pathogens comparing the two pathogens reveals how S. Typhi avoids recognition and elimination by patrolling immune cells called neutrophils, allowing it to disseminate throughout the patient's body.

Neutrophils track down microbial invaders and gobble them up. To investigate why some Salmonella strains trigger a neutrophil response but others don't, researchers led by Volkmar Heinrich and Andreas Bäumler from the University of California at Davis, USA, designed a way to directly observe the interaction between a single bacterium and a single neutrophil cell. They immobilized the bacterium with laser tweezers in close proximity to a neutrophil held by a tiny glass pipette.

A close encounter with S. Typhimurium provokes an obvious response by the neutrophil: the initially round immune cell bulges out towards the bacterium, getting ready to make contact and ingest the intruder. Proximity to S. Typhi, in contrast, stimulates no visible changes. This differential response depends on a "natural" immune response environment, that is, on the presence of human blood serum.

To get at the signals revealing the presence of S. Typhimurium -- which are somehow absent in (or obstructed by) the presence of S. Typhi -- the researchers used a second experimental set up. In a so-called Boyden chamber, either bacteria or chemicals that attract neutrophils are concentrated in a bottom compartment that is filled with human blood serum. Neutrophils are initially concentrated in the upper compartment, and their migration to the bottom is quantified.

As expected, the presence of S. Typhimurium caused migration of neutrophils to the bottom compartment. This response was blocked by a drug that inhibits the complement system, a part of the non-specific immune system present in human blood. As for the difference between S. Typhimurium and S. Typhi, the researchers could show that a particular part of the outer layer of S. Typhi -- the so-called Vi capsular polysaccharide -- was responsible for inhibiting the complement-dependent attraction of neutrophils. When they generated S. Typhi lacking the Vi capsular polysaccharide and tested them in both experimental settings, they found that these behaved just like S. Typhimurium, i.e. evoked the "reach-out" response in pipette-held neutrophils and, in the Boyden chamber, elicited migration of neutrophils to the bottom compartment.

Because the researchers found that mouse neutrophils behaved just like human neutrophils in these experiments, they then tested whether they could recapitulate the difference "in vivo," i.e. in mice infected with both intact S. Typhi and with S. Typhi lacking the Vi capsular polysaccharide. Indeed, in these mice, neutrophils were found preferentially in association with the latter bacteria. Finally, in mice with a defective complement system, there was no visible preference of neutrophils for either of the two types of S. Typhi.

The data, including striking videos, the researchers say, "illustrate that the Vi capsular polysaccharide can act as a "cloaking device" that makes S. Typhi practically "invisible" to neutrophils." Their results, they add, "suggest that one of the differences between [milder] gastroenteritis and [dangerous] typhoid fever is that the pathogen causing the latter disease evades neutrophil chemotaxis."


Story Source:

The above story is based on materials provided by PLOS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tamding Wangdi, Cheng-Yuk Lee, Alanna M. Spees, Chenzhou Yu, Dawn D. Kingsbury, Sebastian E. Winter, Christine J. Hastey, R. Paul Wilson, Volkmar Heinrich, Andreas J. Bäumler. The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis. PLoS Pathogens, 2014; 10 (8): e1004306 DOI: 10.1371/journal.ppat.1004306

Cite This Page:

PLOS. "The typhoid fever pathogen uses a cloaking mechanism to evade neutrophil neutralization." ScienceDaily. ScienceDaily, 7 August 2014. <www.sciencedaily.com/releases/2014/08/140807145734.htm>.
PLOS. (2014, August 7). The typhoid fever pathogen uses a cloaking mechanism to evade neutrophil neutralization. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/08/140807145734.htm
PLOS. "The typhoid fever pathogen uses a cloaking mechanism to evade neutrophil neutralization." ScienceDaily. www.sciencedaily.com/releases/2014/08/140807145734.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) — Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) — Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) — Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) — Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins