Featured Research

from universities, journals, and other organizations

New ways to treat solid tumors using protein

Date:
August 15, 2014
Source:
Monash University
Summary:
An antibody against the protein EphA3, found in the micro-environment of solid cancers, has anti-tumor effects, an international team of scientists has shown. As EphA3 is present in normal organs only during embryonic development but is expressed in blood cancers and in solid tumors, this antibody-based approach may be a suitable candidate treatment for solid tumors.

"We screened various tumors from patient biopsies - sarcomas, melanomas as well as prostate, colon, breast, brain and lung cancers - and confirmed EphA3 expression on stromal cells and newly forming blood vessels,” Professor Scott said.
Credit: Image courtesy of Monash University

An international team of scientists has shown that an antibody against the protein EphA3, found in the micro-environment of solid cancers, has anti-tumor effects.

Related Articles


As EphA3 is present in normal organs only during embryonic development but is expressed in blood cancers and in solid tumors, this antibody-based approach may be a suitable candidate treatment for solid tumors.

The researchers from Monash University and Ludwig Cancer Research, in Australia, and KaloBios Pharmaceuticals, in the US, have had their findings published in the journal Cancer Research.

The team, led jointly by the late Professor Martin Lackmann, from the School of Biomedical Sciences at Monash; and Professor Andrew Scott, from Ludwig Cancer Research, has found that even if tumor cells do not have this molecule they can thrive by recruiting and taking advantage of supporting EphA3-containing cells in the tumor micro-environment.

First author, Dr Mary Vail, Monash Department of Biochemistry and Molecular Biology said: "The tumor cells send out signals to the surrounding area and say: 'We need a blood supply and a foundation upon which to spread'."

"We have shown that EphA3 expressing stromal stem cells, which are produced by the bone marrow, form cells that support and create blood vessels in tumors," Dr Vail said.

Professor Andrew Scott's team at Ludwig introduced human prostate cancer cells into a mouse model to mimic disease progression in humans. EphA3 was found in stromal cells and blood vessels surrounding the tumor.

They also observed that treatment with an antibody against EphA3 (chIIIA4) significantly slowed tumor growth. The antibody damaged tumor blood vessels and disrupted the stromal micro-environment, and cancer cells died because their 'life-support' was compromised.

"In addition, we screened various tumors from patient biopsies -- sarcomas, melanomas as well as prostate, colon, breast, brain and lung cancers -- and confirmed EphA3 expression on stromal cells and newly forming blood vessels," Professor Scott said.

"Our research findings indicate that the tumor micro-environment is important, and monoclonal antibodies against EphA3 are one way to target and kill a variety of solid tumors as well as blood cancers."

Currently, KaloBios Pharmaceuticals is testing the anti-EphA3 antibody KB004 in a multi-centre Phase I/II clinical trial in Melbourne and the US in patients with EphA3 expressing blood malignancies: AML, MDS and myelofibrosis.

Dr Vail, who collaborated with her former mentor on the project for 10 years, said this research represented Martin Lackmann's life work.

"Martin was dedicated to helping people, and believed that KB004 was a promising therapeutic approach. He rightly anticipated that it would be well-tolerated in cancer patients, and through this collaborative project, his pioneering research has progressed to clinical trials and potentially new treatments for cancer patients," Dr Vail said.


Story Source:

The above story is based on materials provided by Monash University. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. E. Vail, C. Murone, A. Tan, L. Hii, D. Abebe, P. W. Janes, F.-T. Lee, M. Baer, V. Palath, C. Bebbington, G. Yarranton, C. Llerena, S. Garic, D. Abramson, G. Cartwright, A. M. Scott, M. Lackmann. Targeting EphA3 Inhibits Cancer Growth by Disrupting the Tumor Stromal Microenvironment. Cancer Research, 2014; 74 (16): 4470 DOI: 10.1158/0008-5472.CAN-14-0218

Cite This Page:

Monash University. "New ways to treat solid tumors using protein." ScienceDaily. ScienceDaily, 15 August 2014. <www.sciencedaily.com/releases/2014/08/140815102231.htm>.
Monash University. (2014, August 15). New ways to treat solid tumors using protein. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2014/08/140815102231.htm
Monash University. "New ways to treat solid tumors using protein." ScienceDaily. www.sciencedaily.com/releases/2014/08/140815102231.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins