Featured Research

from universities, journals, and other organizations

Some anti-inflammatory drugs affect more than their targets

Date:
August 21, 2014
Source:
Johns Hopkins Medicine
Summary:
Three commonly used nonsteroidal anti-inflammatory drugs alter the activity of enzymes within cell membranes, researchers have found. Their finding suggests that, if taken at higher-than-approved doses and/or for long periods of time, these prescription-level nonsteroidal anti-inflammatory drugs and other drugs that affect the membrane may produce wide-ranging and unwanted side effects.

This is a schematic showing that some drugs that affect cell membranes also increase the range of proteins cut by rhomboid proteases.
Credit: Courtesy of Cell Press, modified

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved doses and/or for long periods of time, these prescription-level NSAIDs and other drugs that affect the membrane may produce wide-ranging and unwanted side effects.

More positively, the researchers say, their work provides the basis for a test that drug developers can use to predict and perhaps avoid these side effects in new medicines they make. A summary of the results will be published online in the journal Cell Reports on Aug. 21.

"When drug designers think about possible sources of side effects, they tend to think about which proteins are similar to the protein they are targeting, and they make sure that the former are not affected by the drug," says Sinisa Urban, Ph.D., an associate professor of molecular biology and genetics at the Johns Hopkins University School of Medicine and a Howard Hughes Medical Institute investigator. "But our group has found that drugs that affect the cell membrane can alter the activity of proteins that are totally unrelated to the target."

Working with Syed Moin, then a postdoctoral fellow in his laboratory, Urban's project began as an investigation into the role of the cell membrane in the activity of a group of "cellular scissors" embedded within it, known as rhomboid proteases. When rhomboid proteases cut proteins, the split proteins are released from the membrane. From there, half a protein might go on to signal to another cell or both halves might end up being degraded to prevent further functioning. It all depends on the jobs of the specific proteins that are cut, which are known to play roles in everything from malaria to Parkinson's disease.

Urban says they had already learned that rhomboid proteases have an unusual way of "deciding" which proteins to cut: They look for those whose structures are unstable. Since some proteins are inherently more stable or less stable, rhomboid proteases have certain "protein clients" that are more or less likely to be cut.

Building on the fact that cell membranes provide some support to proteins embedded in them, Urban tried changing the physical properties of this "habitat" to see if alterations would change which proteins rhomboid proteases cut.

He did that by treating human cells with two chemicals that either made the membranes more flexible or distorted their shape. As suspected, rhomboid proteases started cutting proteins they don't normally cut, namely amyloid-beta precursor protein (APP) and the signaling protein Delta, while continuing to cut their standard "clients." This suggests that the enzymes had lost their ability to discriminate between clients and nonclients, or that nonclients started acting like clients when the cell membrane changed, Urban says.

Aware that many drugs end up in the cell membrane, Urban assessed the effect of certain drugs on rhomboid proteases' ability to recognize their normal clients.

Recent studies have looked at the ability of certain prescription-only NSAIDs to repair the function of gamma-secretase, another membrane enzyme that has more than 100 different protein clients, the most famous of which is APP. When gamma-secretase cuts APP at the "wrong" site, it generates a short protein piece that clumps in the brain and goes on to cause Alzheimer's disease.

According to those same studies, some prescription-level NSAIDs, like flurbiprofen, approved for treating serious arthritis, make gamma-secretase less likely to cut APP at the wrong site, but how they do so is unclear.

If the drugs alter gamma-secretase activity by changing its habitat, the researchers thought they might have a similar effect on rhomboid proteases. So Urban treated the cells with flurbiprofen, indomethacin and sulindac at high but similar concentrations to those found in the blood of patients taking them at approved doses. Rhomboid proteases again cut clients they shouldn't, like APP and Delta, just as they had when treated with the membrane-altering chemicals.

When cells were treated with NSAIDS sold over-the-counter, like aspirin, ibuprofen and naproxen, however, the range of clients cut by rhomboid proteases increased only slightly, if at all.

To test the effect of the NSAIDs on cell membranes directly, Urban used an instrument that measures melting temperatures. Because membranes are composed primarily of fat molecules, heat can make them more fluid, like melting butter. In the same way that olive oil is a liquid at room temperature but shortening is a solid, the composition of molecules in the cell membrane can raise or lower the temperature at which it "melts." A lower melting temperature means a more flexible membrane, and the researchers found that the same prescription-level NSAIDs that lowered the membrane's melting temperature caused rhomboid proteases to cut nonclient proteins.

"It's possible that some of the side effects of NSAIDs are caused by their effect on the membrane and its enzymes," says Urban. "Our results are also a caution to drug developers trying to target new drugs to the membrane or hoping to increase the duration or dosage of already approved drugs. Throwing off the balance of the membrane has consequences."

One of the benefits of this study is that the researchers' method can be used to test new drugs for membrane-altering effects. "Now we can use rhomboid proteases as predictors of a drug's possible effects on the membrane and its enzymes," says Urban.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Siniša Urban, SyedM. Moin. A Subset of Membrane-Altering Agents and γ-Secretase Modulators Provoke Nonsubstrate Cleavage by Rhomboid Proteases. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.07.039

Cite This Page:

Johns Hopkins Medicine. "Some anti-inflammatory drugs affect more than their targets." ScienceDaily. ScienceDaily, 21 August 2014. <www.sciencedaily.com/releases/2014/08/140821124831.htm>.
Johns Hopkins Medicine. (2014, August 21). Some anti-inflammatory drugs affect more than their targets. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/08/140821124831.htm
Johns Hopkins Medicine. "Some anti-inflammatory drugs affect more than their targets." ScienceDaily. www.sciencedaily.com/releases/2014/08/140821124831.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins