Featured Research

from universities, journals, and other organizations

Early lineage segregation during early mammalian heart development defined by researchers

Date:
August 25, 2014
Source:
Libre de Bruxelles, Université
Summary:
During embryonic development, the cells that will form the heart need to be specified at the correct time, migrate at the correct place, proliferate to ensure the harmonious morphogenesis and growth of the heart. Any defects during this critical stage of development will lead to congenital heart diseases. While different progenitors that contribute to the development of the heart have been identified, it remains unclear whether these cells arise from common progenitors or derive from distinct progenitors that are specified at different time during development.

The heart contains four different chambers and different cell types such as cardiomyocytes (CMs), endocardial cells (ECs) covering the inner layer of the heart, epicardial cells covering the outer layer of the heart and smooth muscle cells (SMCs) covering the coronary arteries and main vessels. During embryonic development, the cells that will form the heart need to be specified at the correct time, migrate at the correct place, proliferate to ensure the harmonious morphogenesis and growth of the heart. Any defects during this critical stage of development will lead to congenital heart diseases, which represent the first cause of severe birth malformations. While different progenitors that contribute to the development of the heart have been identified, it remains unclear whether these cells arise from common progenitors or derive from distinct progenitors that are specified at different time during development.

Related Articles


In a new study published in Nature Cell Biology, researchers led by Pr. Cédric Blanpain, MD/PhD, WELBIO investigator at the IRIBHM, Université libre de Bruxelles, Belgium, have identified temporally distinct populations of cardiac progenitors that differentiate into different cell lineages and contribute to different regions of the heart.

Fabienne Lescroart, Samira Chabab and colleagues performed for the first time a temporally controlled clonal analysis of early cardiac progenitors, in which they marked single cells at the early stages of embryonic development and assess the contribution of single cardiac progenitors to the heart development. In contrast to the prevalent notion that these cells arise from a common progenitors, the researchers found that the different cardiac progenitors are specified at different time points during development and will only contribute to the morphogenesis of certain cardiac regions, like if the heart is build from different blocs that are made at different time during development. Furthermore, the researchers found that in contrast to the multilineage differentiation of these cells in vitro, the early population of cardiac progenitors did not differentiate into all cardiovascular lineages in vivo, but were rather pre-specified to give rise to either cardiac cells or endocardial cells, suggesting that the ultimate fate of the progenitors can be regulated by the environmental cues that the different progenitors encounter during cardiac morphogenesis. "We were extremely surprized to find that the early the cardiac progenitors have a much narrow regional contribution and were not able to differentiate into more than one cell types in contrast to late born cardiac progenitors. We need to completely rethink about the way heart is formed" comment Fabienne Lescroart, the first author of the study.

Using new tools to isolate for the first time the early cardiac progenitors during embryonic development, Fabienne Lescroart, Samira Chabab and colleagues define the molecular characteristics of these different progenitors and showed that the different populations of Mesp1 progenitors, although very similar molecularly, present also notable difference, consistent with their lineage and regional contribution. In addition, characterization of the gene expression at a single cell level have shown that the cardiac progenitors were molecularly heterogenous and expressed different combination of genes that will define the cell fate and regionalization of each progenitors. Understanding how this specificity is achieved will be important to instruct and/or restrict the fate of multipotent cardiovascular progenitors into a particular cell lineage in vivo. The answers to these questions will be important to design new strategies to direct the differentiation of pluripotent cells and iPS cells specifically into pure population of cardiac cells, and for improving cellular therapy in cardiac diseases.

In conclusion, this work uncovers how the heart is build from temporally distinct progenitors with different differentiation potential. This work provides the first temporal clonal analysis of heart development and the first molecular characterization of cardiac progenitors at the early step of cardiac morphogenesis. " This new study really changes the way we think about cardiac development and have important implications for better understanding the aetology of congenital cardiac malformations and should be the starting point of further studies to understand how the regionalization and the choice of differentiation into a particular cardiovascular lineage is achieved, which have important implications for improving cell therapy during cardiac repair" comments Pr Cédric Blanpain, the senior author of this study.


Story Source:

The above story is based on materials provided by Libre de Bruxelles, Université. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fabienne Lescroart, Samira Chabab, Xionghui Lin, Steffen Rulands, Catherine Paulissen, Annie Rodolosse, Herbert Auer, Younes Achouri, Christine Dubois, Antoine Bondue, Benjamin D. Simons, Cédric Blanpain. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nature Cell Biology, 2014; DOI: 10.1038/ncb3024

Cite This Page:

Libre de Bruxelles, Université. "Early lineage segregation during early mammalian heart development defined by researchers." ScienceDaily. ScienceDaily, 25 August 2014. <www.sciencedaily.com/releases/2014/08/140825084838.htm>.
Libre de Bruxelles, Université. (2014, August 25). Early lineage segregation during early mammalian heart development defined by researchers. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/08/140825084838.htm
Libre de Bruxelles, Université. "Early lineage segregation during early mammalian heart development defined by researchers." ScienceDaily. www.sciencedaily.com/releases/2014/08/140825084838.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins