Featured Research

from universities, journals, and other organizations

Early growth of giant galaxy, just 3 billion years after the Big Bang, revealed

Date:
August 27, 2014
Source:
Space Telescope Science Institute (STScI)
Summary:
The birth of massive galaxies, according to galaxy formation theories, begins with the buildup of a dense, compact core that is ablaze with the glow of millions of newly formed stars. Evidence of this early construction phase, however, has eluded astronomers — until now. Astronomers identified a dense galactic core, dubbed "Sparky," using a combination of data from several space telescopes. Hubble photographed the emerging galaxy as it looked 11 billion years ago, just 3 billion years after the birth of our universe in the big bang.

This illustration reveals the celestial fireworks deep inside the crowded core of a developing galaxy, as seen from a hypothetical planetary system. The sky is ablaze with the glow from nebulae, fledgling star clusters, and stars exploding as supernovae. The rapidly forming core may eventually become the heart of a mammoth galaxy similar to one of the giant elliptical galaxies seen today.
Credit: NASA, ESA, and Z. Levay and G. Bacon (STScI)

Astronomers have for the first time gotten a glimpse of the earliest stages of massive galaxy construction. The building site, dubbed "Sparky," is a developing galaxy containing a dense core that is blazing with the light of millions of newborn stars which are forming at a ferocious rate. The discovery was made possible through combining observations from NASA's Hubble and Spitzer space telescopes, the European Space Agency's Herschel Space Observatory, and the W.M. Keck Observatory in Hawaii.

Related Articles


Because the infant galaxy is so far away, it is seen as it appeared 11 billion years ago, just 3 billion years after the birth of the universe in the big bang. Astronomers think the compact galaxy will continue to grow, possibly becoming a giant elliptical galaxy, a gas-deficient assemblage of ancient stars theorized to develop from the inside out, with a compact core marking its beginnings.

"We really hadn't seen a formation process that could create things that are this dense," explained Erica Nelson of Yale University in New Haven, Connecticut, lead author of the science paper announcing the results. "We suspect that this core-formation process is a phenomenon unique to the early universe because the early universe, as a whole, was more compact. Today, the universe is so diffuse that it cannot create such objects anymore."

The research team's paper appears in the August 27 issue of the journal Nature.

Although only a fraction of the size of the Milky Way, the tiny powerhouse galaxy already contains about twice as many stars as our galaxy, all crammed into a region only 6,000 light-years across. The Milky Way is about 100,000 light-years across. The barely visible galaxy may be representative of a much larger population of similar objects that are obscured by dust.

"They're very extreme environments," Nelson said. "It's like a medieval cauldron forging stars. There's a lot of turbulence, and it's bubbling. If you were in there, the night sky would be bright with young stars, and there would be a lot of dust, gas, and remnants of exploding stars. To actually see this happening is fascinating."

Alongside determining the galaxy's size from the Hubble images, the team dug into archival far-infrared images from the Spitzer and Herschel telescopes. The analysis allowed them to see how fast the young galaxy is churning out stars. Sparky is producing roughly 300 stars per year. By comparison, the Milky Way produces roughly 10 stars per year.

Astronomers believe that this frenzied star formation occurred because the galactic center is forming deep inside a gravitational well of dark matter, an invisible form of matter that makes up the scaffolding upon which galaxies formed in the early universe. A torrent of gas is flowing into this well at the galaxy's core, sparking waves of star birth.

The sheer amount of gas and dust within an extreme star-forming region like this may explain why these compact galaxies have eluded astronomers until now. Bursts of star formation create dust, which builds up within the forming galaxy and can block some starlight. Sparky was only barely visible, and it required the infrared capabilities of Hubble's Wide Field Camera 3, Spitzer, and Herschel to reveal the developing galaxy.

The observations indicate that the galaxy had been furiously making stars for more than a billion years (at the time the light we now observe began its long journey). But the galaxy didn't keep up this frenetic pace for very long, the researchers suggested. Eventually, the galaxy probably stopped forming stars in the packed core. Smaller galaxies then might have merged with the growing galaxy, making it expand outward in size over the next 10 billion years, possibly becoming similar to one of the mammoth, sedate elliptical galaxies seen today.

"I think our discovery settles the question of whether this mode of building galaxies actually happened or not," said team member Pieter van Dokkum of Yale University. "The question now is, how often did this occur? We suspect there are other galaxies like this that are even fainter in near-infrared wavelengths. We think they'll be brighter at longer wavelengths, and so it will really be up to future infrared telescopes such as NASA's James Webb Space Telescope to find more of these objects."


Story Source:

The above story is based on materials provided by Space Telescope Science Institute (STScI). Note: Materials may be edited for content and length.


Journal Reference:

  1. Erica Nelson, Pieter van Dokkum, Marijn Franx, Gabriel Brammer, Ivelina Momcheva, Natascha Fφrster Schreiber, Elisabete da Cunha, Linda Tacconi, Rachel Bezanson, Allison Kirkpatrick, Joel Leja, Hans-Walter Rix, Rosalind Skelton, Arjen van der Wel, Katherine Whitaker, Stijn Wuyts. A massive galaxy in its core formation phase three billion years after the Big Bang. Nature, 2014; DOI: 10.1038/nature13616

Cite This Page:

Space Telescope Science Institute (STScI). "Early growth of giant galaxy, just 3 billion years after the Big Bang, revealed." ScienceDaily. ScienceDaily, 27 August 2014. <www.sciencedaily.com/releases/2014/08/140827131551.htm>.
Space Telescope Science Institute (STScI). (2014, August 27). Early growth of giant galaxy, just 3 billion years after the Big Bang, revealed. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/08/140827131551.htm
Space Telescope Science Institute (STScI). "Early growth of giant galaxy, just 3 billion years after the Big Bang, revealed." ScienceDaily. www.sciencedaily.com/releases/2014/08/140827131551.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins